EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等值面体的三维涡旋数量与形状特征研究

陈槐 张磊 王乃茹 朱立俊

陈槐, 张磊, 王乃茹, 朱立俊. 基于等值面体的三维涡旋数量与形状特征研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-297
引用本文: 陈槐, 张磊, 王乃茹, 朱立俊. 基于等值面体的三维涡旋数量与形状特征研究. 力学学报, 待出版 doi: 10.6052/0459-1879-23-297
Chen Huai, Zhang Lei, Wang Nairu, Zhu Lijun. Isosurface-based population and shape analysis of 3 d vortices. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-297
Citation: Chen Huai, Zhang Lei, Wang Nairu, Zhu Lijun. Isosurface-based population and shape analysis of 3 d vortices. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-297

基于等值面体的三维涡旋数量与形状特征研究

doi: 10.6052/0459-1879-23-297
基金项目: 国家自然科学基金面上项目(52179072); 国家自然科学基金青年项目(52209095); 中国水利水电科学研究院水利部泥沙科学与北方河流治理重点实验室开放研究基金(IWHR-SEDI-2022-01)资助
详细信息
    通讯作者:

    张磊, 高工, 主要研究方向为紊流力学与泥沙运动力学. E-mail: leizhang06@iwhr.com

  • 中图分类号: O357.5

ISOSURFACE-BASED POPULATION AND SHAPE ANALYSIS OF 3 D VORTICES

  • 摘要: 涡旋是紊流的基本结构, 被誉为流体运动的肌腱, 涡旋研究对自然探索和工程应用有重要的意义. 基于直接数值模拟的槽道紊流数据与旋转强度涡旋识别方法, 以涡旋三维结构等值面体(以三角网格为单位)为研究对象, 通过设置三角形切面, 利用两三角形相交快速检测算法提取涡旋多边形, 研究不同等值面体阈值及壁面距离条件下, 涡旋数量与形状特征(圆度、半径、凸状及纵横比因子)的变化规律. 以对数区内涡旋为例: 随着阈值的增加, 涡旋密度呈对数律快速递减, 圆度与半径因子PDF变高耸, 圆度均值快速递增后保持不变而半径均值不断递减, 纵横比因子PDF未显著改变且均值基本不变, 凸状因子PDF向脉冲函数靠近, 说明阈值增大导致涡旋逐渐变少、变圆、变小并更饱满. 在同一阈值下, 随着壁面距离的增加, 涡旋密度在外区(除靠近水面区域外)也呈对数律递减, 圆度、纵横比及凸状因子先快速增加随后不变或缓慢增长, 半径因子快速递减后保持不变, 说明涡旋在远离壁面的过程中在不断破灭但形态却较为稳定.

     

  • 图  1  涡旋等值面体与三角形切面

    Figure  1.  3D vortex structure indicated by isosurface of swirling strength and a triangular cutting plane

    图  2  涡旋提取与形状因子定义

    Figure  2.  Vortex extraction and shape factors definition

    图  3  本文结果与前人结果涡旋半径PDF对比图(y + = 110平面, 样本数量9423250)

    Figure  3.  Comparison on PDF of vortex radius between this study and previous study (y + = 110)

    图  4  阈值对涡旋提取密度的影响(y + = 110平面)

    Figure  4.  Influence of threshold on the number of extracted vortices (y + = 110)

    图  5  阈值对涡旋形状因子概率函数PDF及CDF的影响(y + = 110平面)

    Figure  5.  Influence of threshold on PDFs and CDFs of vortex shape factors (y + = 110)

    图  6  阈值对涡旋形状因子均值的影响(y + = 110平面)

    Figure  6.  Influence of threshold on mean values of vortex shape factors (y + = 110)

    图  7  固定阈值($ \lambda _{ci}^ + = 0.04 $)与各zx平面内旋转强度最大值($ \lambda _{ci}^{\max}\left( y \right) $)的比值

    Figure  7.  ratio of fixed threshold ($ \lambda _{ci}^ + = 0.04 $) to the maximum swirling strength in each zx-plane ($ \lambda _{ci}^{\max}\left( y \right) $)

    图  8  壁面距离对涡旋提取密度的影响

    Figure  8.  Influence of wall distance on the number of extracted vortices

    图  9  壁面距离对涡旋形状因子概率函数PDF及CDF的影响

    Figure  9.  Influence of wall distance on PDFs and CDFs of vortex shape factors

    图  10  壁面距离对涡旋形状因子均值的影响

    Figure  10.  Influence of wall distance on mean values of vortex shape factors

    表  1  DNS槽道紊流计算参数

    Table  1.   Parameters of the DNS channel flow dataset

    Mesh spacingGrid pointsSample
    number
    Δx + Δz + Δyc + NxNzNyNs
    3.8*3.87.66144*230438548
    *注: 为避免网格分辨率不均匀性对涡旋识别产生影响, 将原x方向分辨率从7.6 + 插值到3.8 + .
    下载: 导出CSV
  • [1] Adrian RJ. Hairpin vortex organization in wall turbulence. Physics of Fluids, 2007, 19: 41301 doi: 10.1063/1.2717527
    [2] 童秉纲, 尹协远, 朱克勤. 涡运动理论-第2版. 合肥: 中国科学技术大学出版社, 2012

    Tong B, Yin X, Zhu K. Vortex dynamics - Second Edition. Hefei: University of Science and Technology of China Press, 2012 (in Chinese))
    [3] 陈槐. 封闭槽道紊流相干结构研究[博士论文]. 北京: 清华大学, 2015

    Chen H. Coherent Structures in Turbulent Channel Flows [PhD Thesis]. Beijing: Tsinghua University, 2015 (in Chinese))
    [4] Schlatter P, Li Q, örlü R, et al. On the near-wall vortical structures at moderate Reynolds numbers. European Journal of Mechanics - B/Fluids, 2014, 48: 75-93 doi: 10.1016/j.euromechflu.2014.04.011
    [5] Gao Q, Ortiz-Duenas C, Longmire E K. Analysis of vortex populations in turbulent wall-bounded flows. Journal of Fluid Mechanics, 2011, 678: 87-123 doi: 10.1017/jfm.2011.101
    [6] Dennis DJ, Nickels TB. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. Journal of Fluid Mechanics, 2011, 673: 180-217
    [7] Kolář V, Moses P, Aístek J. Local Corotation of Line Segments and Vortex Identification, 17 th Australasian Fluid Mechanics Conference, Auckland, 5-9 December 2010. New York: Curran Associates, Inc. , 2011, 251-254.
    [8] Pirozzoli S, Bernardini M, Grasso F. On the dynamical relevance of coherent vortical structures in turbulent boundary layers. Journal of Fluid Mechanics, 2010, 648: 325 doi: 10.1017/S0022112009993156
    [9] O'Farrell C, Martín MP. Chasing eddies and their wall signature in DNS data of turbulent boundary layers. Journal of Turbulence, 2009, 10: N15 doi: 10.1080/14685240902852701
    [10] Pirozzoli S, Bernardini M, Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer. Journal of Fluid Mechanics, 2008, 613: 205-231 doi: 10.1017/S0022112008003005
    [11] Kang S, Tanahashi M, Miyauchi T. Dynamics of fine scale eddy clusters in turbulent channel flows. Journal of Turbulence, 2007, 8: N52 doi: 10.1080/14685240701528544
    [12] Ganapathisubramani B, Longmire EK, Marusic I. Experimental investigation of vortex properties in a turbulent boundary layer. Physics of Fluids, 2006, 18: 55105 doi: 10.1063/1.2196089
    [13] Das SK, Tanahashi M, Shoji K, et al. Statistical properties of coherent fine eddies in wall-bounded turbulent flows by direct numerical simulation. Theoretical and Computational Fluid Dynamics, 2006, 20(2): 55-71 doi: 10.1007/s00162-006-0008-z
    [14] Chakraborty P, Balachandar S, Adrian RJ. On the relationships between local vortex identification schemes. Journal of Fluid Mechanics, 2005, 535: 189-214 doi: 10.1017/S0022112005004726
    [15] Nagaosa R, Handler RA. Statistical analysis of coherent vortices near a free surface in a fully developed turbulence. Physics of Fluids, 2003, 15(2): 375-394 doi: 10.1063/1.1533071
    [16] Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 1999, 387: 353-396 doi: 10.1017/S002211209900467X
    [17] Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94 doi: 10.1017/S0022112095000462
    [18] Sayyari MJ, Hwang J, Kim KC. Unsupervised deep learning of spatial organizations of coherent structures in a turbulent channel flow. Physics of Fluids, 2022, 34(11): 115138 doi: 10.1063/5.0123555
    [19] Chen H, Li D, Bai R, et al. Comparison of swirling strengths derived from two- and three-dimensional velocity fields in channel flow. AIP Advances, 2018, 8(5): 55302 doi: 10.1063/1.5023533
    [20] Chen Q, Adrian RJ, Zhong Q, et al. Experimental study on the role of spanwise vorticity and vortex filaments in the outer region of open-channel flow. Journal of Hydraulic Research, 2014, 52(4): 476-489 doi: 10.1080/00221686.2014.919965
    [21] 陈槐, 李丹勋, 王浩等. 槽道紊流中涡旋倾角的概率密度分析. 应用基础与工程科学学报, 2014, 24(4): 661-671 (Chen H. Li D, Wang H, et al. Analysis on PDF of Elevation Angle of Vortices in DNS Channel Flow. Journal of Basic Science and Engineering, 2014, 24(4): 661-671 (in Chinese)

    Chen H. Li D, Wang H, et al. Analysis on PDF of Elevation Angle of Vortices in DNS Channel Flow. Journal of Basic Science and Engineering, 2014, 24(4): 661-671 (in Chinese))
    [22] Herpin S, Stanislas M, Soria J. The organization of near-wall turbulence: a comparison between boundary layer SPIV data and channel flow DNS data. Journal of Turbulence, 2010, 11(47): 1-30
    [23] Natrajan VK, Wu Y, Christensen KT. Spatial signatures of retrograde spanwise vortices in wall turbulence. Journal of Fluid Mechanics, 2007, 574: 155-167 doi: 10.1017/S0022112006003788
    [24] Wu Y, Christensen KT. Population trends of spanwise vortices in wall turbulence. Journal of Fluid Mechanics, 2006, 568: 55-76 doi: 10.1017/S002211200600259X
    [25] Del-Alamo JC, Jimenez J, Zandonade P, et al. Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 2004, 500: 135-144 doi: 10.1017/S002211200300733X
    [26] Lorensen WE, Cline HE. Marching cubes: A high resolution 3 D surface construction algorithm. ACM siggraph computer graphics, 1987, 21(4): 163-169 doi: 10.1145/37402.37422
    [27] Möller T. A Fast Triangle-Triangle Intersection Test. Journal of graphics tools, 1997, 2(2): 25-30 doi: 10.1080/10867651.1997.10487472
    [28] Yan T, Liu Y, Wei D, et al. Shape analysis of sand particles based on Fourier descriptors. Environmental Science and Pollution Research, 2023, 30(22): 62803-62814 doi: 10.1007/s11356-023-26388-5
    [29] Marusic I, Adrian RJ. Scaling issues and the role of organized motion in wall turbulence // Davidson PA, Kaneda Y, Sreenvasan KR, Ten chapters in Turbulence, Cambridge: Cambridge University Press, 2013, 182-183.
    [30] Robinson SK. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991, 23: 601-639 doi: 10.1146/annurev.fl.23.010191.003125
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  6
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-17

目录

    /

    返回文章
    返回