VIBRATIONAL CHARACTERISTICS OF HONEYCOMB SANDWICH CANTILEVER PLATE WITH CURVED-WALL CORE
-
摘要: 蜂窝结构作为一种多孔材料具有轻质、高强度、高刚度的优点, 兼具隔声降噪、隔热等优良性能, 被广泛应用于交通运输、航空航天等领域. 传统直壁蜂窝在受力后容易出现应力集中的问题, 这将导致蜂窝夹层产生裂纹破坏, 缩短夹层板的使用寿命. 针对此问题本文设计了一种以圆弧曲壁蜂窝作为芯层的蜂窝夹层板, 基于单位载荷法推导了蜂窝芯的等效参数, 建立曲壁蜂窝夹层板的动力学模型, 利用Chebyshev-Ritz方法求解悬臂边界下曲壁蜂窝夹层板的固有频率, 并用有限元方法进行对比验证, 发现前5阶固有频率的误差均在5%以内, 每阶固有频率对应的振型一致. 通过3D打印聚乳酸(PLA)制备了曲壁蜂窝夹层板, 使用万能试验机对PLA拉伸试件进行准静态拉伸测定了打印材料的杨氏模量, 搭建振动试验平台对制备的曲壁蜂窝夹层板进行正弦扫频试验、定频谐波驻留试验和冲击试验. 对比发现3D打印模型振动试验获得的前5阶固有频率与理论模型和有限元模型的计算结果三者一致, 试验发现曲壁蜂窝芯在特定频段内具有一定的抗冲击性能. 研究结果将为曲壁蜂窝在振动和隔振方面的应用提供理论支持.Abstract: As a kind of porous material, the honeycomb structure has the advantages of light weight, high strength, high stiffness, sound insulation, noise reduction, heat insulation and other excellent performance. Therefore, it is widely used in the field of transportation vehicles and aerospace etc. The traditional straight wall honeycomb is prone to stress concentration after loading, which will lead to crack failure and shorten the service life of the honeycombs. In order to solve this problem of honeycombs with straight walls, a honeycomb sandwich plate with circular arc core layer is designed in this paper. The equivalent parameters of honeycomb core are derived based on unit load method and the dynamic model of the curved-wall-core honeycomb sandwich plate is derived. The Chebyshev-Ritz method was used to solve the natural frequencies of honeycomb sandwich plate under cantilever boundaries, and the finite element method is used to compare. The errors of the first five natural frequencies are all within 5% from the two methods. The modes corresponding to each order of natural frequencies obtained from the finite element model are consistent with those obtained from the theoretical model. The curved honeycomb sandwich plate is prepared by 3D printing polylactic acid (PLA). The Young’s modulus of the printed PLA was measured by quasi-static tensile of the tensile specimen using a universal testing machine. The vibration test platform is built to do the sine sweep test, fixed frequency harmonic resides test and impact test. The comparison shows that the first five natural frequencies obtained from the vibration test of the 3D printing model verify the calculation results of the theoretical model and the finite element model. It is found that the curved-wall honeycomb core has a certain impact resistant performance in a specific frequency band. The obtained research results will provide theoretical support for the application of curved wall honeycombs in vibration and vibrational isolation.
-
表 1 前5阶固有频率结果对比
Table 1. Comparison of the first 5 order natural frequencies results
Frequency/Hz Vibration order 1st 2nd 3rd 4th 5th Theory 35.81 135.93 218.60 229.05 426.38 FEM 36.13 129.24 215.82 238.53 406.53 error/% 0.89 4.93 1.04 4.14 4.65 Test 32.25 149 252.25 — 444.25 error/% 9.94 9.61 15.2 — 4.19 表 2 不同壁厚夹层板的固有频率
Table 2. Natural frequencies of sandwich plate with different wall thicknesses
Vibration order Thickness/mm 1.50 1.75 2.00 2.25 2.50 1st 36.759 36.371 35.812 34.684 33.548 2nd 141.789 138.584 135.934 133.138 131.985 3rd 222.159 219.070 218.607 215.359 207.203 4th 239.694 234.894 229.055 222.481 218.335 5th 446.995 435.837 426.387 419.884 412.145 表 3 不同曲壁半径夹层板的固有频率
Table 3. Natural frequencies of sandwich plate with different curved radius
Vibration order Radius/mm 15.0 17.5 20.0 22.5 25.0 1st 33.984 34.370 35.812 36.188 36.593 2nd 132.039 134.094 135.934 137.163 138.517 3rd 213.256 214.318 218.607 219.249 220.964 4th 223.894 226.731 229.055 236.473 239.395 5th 415.498 421.252 426.387 431.476 435.495 表 4 不同曲壁弧度夹层板的固有频率
Table 4. Natural frequencies of sandwich plate with different curvature radian
Vibration order Radian/(°) 30 45 60 75 90 1st 35.812 36.486 40.334 42.981 41.093 2nd 135.934 139.518 153.903 155.815 156.117 3rd 218.607 219.439 240.159 247.947 233.314 4th 229.055 233.445 248.511 253.024 240.821 5th 426.387 434.681 467.185 478.395 458.317 -
[1] 吴文旺, 肖登宝, 孟嘉旭等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望. 力学学报, 2021, 53(3): 611-638 (Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Structural mechanics design, impact resistance and application of negative Poisson's ratio in vehicle engineering. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638 (in Chinese) [2] 侯秀慧, 吕游, 周世奇等. 新型负刚度吸能结构力学特性分析. 力学学报, 2021, 53(7): 1940-1950 (Hou Xiuhui, Lü You, Zhou Shiqi, et al. Analysis of mechanical properties of new negative stiffness energy absorbing structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950 (in Chinese) doi: 10.6052/0459-1879-21-083 [3] Desguers T, Robinson A. An analytical and numerical investigation into conductive-radiative energy transfers in evacuated honeycombs. Application to the optimisation and design of ultra-high temperature thermal insulation. International Journal of Heat and Mass Transfer, 2022, 188: 122578 [4] 任树伟, 辛锋先, 卢天健. 蜂窝层芯夹层板结构振动与传声特性研究. 力学学报, 2013, 45(3): 349-358 (Ren Shuwei, Xin Fengxian, Lu Tianjian. Study on vibration and sound transmission characteristics of honeycomb core sandwich laminate structure. Chinese journal of theoretical and applied mechanics, 2013, 45(3): 349-358 (in Chinese) doi: 10.6052/0459-1879-12-280 [5] 尹剑飞, 蔡力, 方鑫等. 力学超材料研究进展与减振降噪应用. 力学进展, 2022, 52(3): 1-78 (Yin Jianfei, Cai Li, Fang Xin, et al. Research progress and application of mechanical metamaterials in vibration and noise reduction. Advances in Mechanics, 2022, 52(3): 1-78 (in Chinese) doi: 10.6052/1000-0992-22-035 [6] Gbison LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, 1997: 135-150 [7] 富明慧, 徐欧腾, 陈誉. 蜂窝芯层等效参数研究综述. 材料导报, 2015, 29(5): 127-134 (Fu Minghui, Xu Oteng, Chen Yu. Review on equivalent parameters of honeycomb core layer. Materials review, 2015, 29(5): 127-134 (in Chinese) [8] 杨稳, 张胜兰, 李莹. 蜂窝夹层结构等效模型研究进展. 复合材料科学与工程, 2020, 10: 122-128 (Yang Wen, Zhang Shenglan, Li Ying. Research progress in equivalent models of honeycomb sandwich structures. Composites Science and Engineering, 2020, 10: 122-128 (in Chinese) doi: 10.3969/j.issn.1003-0999.2020.10.017 [9] 乐京霞, 周智斌, 王思宇等. 箭型蜂窝夹层板力学性能及等效方法研究. 华中科技大学学报(自然科学版), 2021, 49(10): 121-126 (Le Jingxia, Zhou Zhibin, Wang Siyu, et al. Study on mechanical properties and equivalent method of arrow honeycomb sandwich laminate. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2021, 49(10): 121-126 (in Chinese) [10] Liu JL, Liu JY, Mei J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores. Composites Science & Technology, 2018, 159: 87-102 [11] Ru ZA, Xin RA, Xiang Y, et al. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures. Construction and Building Materials, 2022, 322: 126453 doi: 10.1016/j.conbuildmat.2022.126453 [12] Albert FG, Giovanni GG, Marco A, et al. Mechanical performance of additively manufactured lightweight cellular solids: influence of cell pattern and relative density on the printing time and compression behavior. Journal of the Mechanics and Physics of Solids, 2019, 122: 1-26 doi: 10.1016/j.jmps.2018.08.022 [13] Zwab C, Jdab C, Kai L, et al. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Structures, 2022, 171: 108816 doi: 10.1016/j.tws.2021.108816 [14] Lee N, Horstemeyer MF, Rhee H, et al. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of The Royal Society Interface, 2014, 11(96): 20140274 doi: 10.1098/rsif.2014.0274 [15] Yang XF, Sun YX, Yang JL, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 2018, 125: 1-11 doi: 10.1016/j.tws.2018.01.014 [16] Deng X, Liu W. In-plane impact dynamic analysis for a sinusoi-dal curved honeycomb structure with negative Poisson’s ratio. Journal of Vibration and Shock, 2017, 36: 103-109 [17] Qiu J, Lang JH, Slocum AH. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 2004, 13(2): 137-146 [18] Restrepo D, Mankame ND, Zavattieri PD. Phase transforming cellular material (PXCM) mechanical response and hysteretic behavior comparison with other cellular materials. Extreme Mechanics Letters, 2015, 4: 52-60 doi: 10.1016/j.eml.2015.08.001 [19] Debeau DA, Seepersad CC, Haberman MR. Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 2018, 33: 290-299 doi: 10.1557/jmr.2018.7 [20] Chen S, Tan XJ, Hu JQ, et al. A novel gradient negative stiffness honeycomb for recoverable energy absorption. Composites Part B: Engineering, 2021, 215: 108745 [21] Di K, Mao XB. Free flexural vibration of honeycomb sandwich laminate with negative Poisson’s ratio simple supported on opposite edges. Acta Mater Composltae Sinica, 2016, 33: 910-920 [22] Li C, Shen HS, Wang H. Nonlinear dynamic response of sandwich laminates with functionally graded auxetic 3D lattice core. Nonlinear Dynamics, 2020, 100: 3235-3252 doi: 10.1007/s11071-020-05686-4 [23] Wu X, Li YG, Cai W, et al. Dynamic responses and energy absorption of sandwich laminate with aluminium honeycomb core under ice wedge impact. International Journal of Impact Engineering, 2022, 162: 104137 doi: 10.1016/j.ijimpeng.2021.104137 [24] Ma MZ, Yao WX, Jiang W, et al. Fatigue of composite honeycomb sandwich laminates under random vibration load. Composite Structures, 2022, 286: 115296 doi: 10.1016/j.compstruct.2022.115296 [25] Zhang W, Ma L, Zhang YF, et al. Nonlinear and dual-parameter chaotic vibrations of lumped parameter model in blisk under combined aerodynamic force and varying rotating speed. Nonlinear Dynamics, 2022, 108: 1217-1246 [26] 陈永清, 仇琨, 李响. 类蜂窝夹层结构振动特性分析及应用研究. 机械, 2022, 49(1): 9-15,36 (Chen Yongqing, Qiu Kun, Li Xiang. Analysis and application of vibration characteristics of honeycomb-like sandwich structures. Mechanical, 2022, 49(1): 9-15,36 (in Chinese) [27] Arunkumar MP, Pitchaimani J, Gangadharan KV, et al. Numerical and experimental study on dynamic characteristics of honeycomb core sandwich laminate from equivalent 2D model. Sādhanā, 2020, 45(1): 206 [28] 闫昭臣, 张君华, 刘彦琦. 不同泊松比蜂窝夹层板的振动实验分析. 应用力学学报, 2021, 38(6): 2256-2261 (Yan Zhaochen, Zhang Junhua, Liu Yanqi. Vibration experimental analysis of honeycomb sandwich laminate with different Poisson ratios. Chinese Journal of Applied Mechanics, 2021, 38(6): 2256-2261 (in Chinese) [29] 何贵勤, 曹登庆, 陈帅等. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报, 2021, 53(8): 2312-2322 (He Guiqin, Cao Dengqing, Chen Shuai, et al. Study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322 (in Chinese) [30] 杨雨恒, 张周锁, 史文博等. 铝蜂窝夹层板动力学建模仿真与试验验证. 机械设计, 2021, 38(8): 9-16 (Yang Yuheng, Zhang Zhousuo, Shi Wenbo, et al. Dynamic modeling simulation and experimental verification of aluminum honeycomb sandwich Laminate. Journal of Machine Design, 2021, 38(8): 9-16 (in Chinese) [31] Reddy JN. Mechanics of Laminated Composite Laminates and Shells: Theory and Analysis. New York: CRC Press, 2004: 110-120 [32] Dozio L, Carrera E. Ritz analysis of vibrating rectangular and skew multilayered laminates based on advanced variable-kinematic models. Composites Structures, 2012, 94(6): 2118-2128 -