EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲壁蜂窝夹层悬臂板的振动特性研究

薛潇 张君华 孙莹 权铁汉

薛潇, 张君华, 孙莹, 权铁汉. 曲壁蜂窝夹层悬臂板的振动特性研究. 力学学报, 2022, 54(11): 3169-3180 doi: 10.6052/0459-1879-22-305
引用本文: 薛潇, 张君华, 孙莹, 权铁汉. 曲壁蜂窝夹层悬臂板的振动特性研究. 力学学报, 2022, 54(11): 3169-3180 doi: 10.6052/0459-1879-22-305
Xue Xiao, Zhang Junhua, Sun Ying, Quan Tiehan. Vibrational characteristics of honeycomb sandwich cantilever plate with curved-wall core. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180 doi: 10.6052/0459-1879-22-305
Citation: Xue Xiao, Zhang Junhua, Sun Ying, Quan Tiehan. Vibrational characteristics of honeycomb sandwich cantilever plate with curved-wall core. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180 doi: 10.6052/0459-1879-22-305

曲壁蜂窝夹层悬臂板的振动特性研究

doi: 10.6052/0459-1879-22-305
基金项目: 国家自然科学基金资助项目(12272057, 11902038, 11732005)
详细信息
    作者简介:

    张君华, 教授, 主要研究方向: 非线性振动. E-mail: hua@bistu.edu.cn

  • 中图分类号: TB53

VIBRATIONAL CHARACTERISTICS OF HONEYCOMB SANDWICH CANTILEVER PLATE WITH CURVED-WALL CORE

  • 摘要: 蜂窝结构作为一种多孔材料具有轻质、高强度、高刚度的优点, 兼具隔声降噪、隔热等优良性能, 被广泛应用于交通运输、航空航天等领域. 传统直壁蜂窝在受力后容易出现应力集中的问题, 这将导致蜂窝夹层产生裂纹破坏, 缩短夹层板的使用寿命. 针对此问题本文设计了一种以圆弧曲壁蜂窝作为芯层的蜂窝夹层板, 基于单位载荷法推导了蜂窝芯的等效参数, 建立曲壁蜂窝夹层板的动力学模型, 利用Chebyshev-Ritz方法求解悬臂边界下曲壁蜂窝夹层板的固有频率, 并用有限元方法进行对比验证, 发现前5阶固有频率的误差均在5%以内, 每阶固有频率对应的振型一致. 通过3D打印聚乳酸(PLA)制备了曲壁蜂窝夹层板, 使用万能试验机对PLA拉伸试件进行准静态拉伸测定了打印材料的杨氏模量, 搭建振动试验平台对制备的曲壁蜂窝夹层板进行正弦扫频试验、定频谐波驻留试验和冲击试验. 对比发现3D打印模型振动试验获得的前5阶固有频率与理论模型和有限元模型的计算结果三者一致, 试验发现曲壁蜂窝芯在特定频段内具有一定的抗冲击性能. 研究结果将为曲壁蜂窝在振动和隔振方面的应用提供理论支持.

     

  • 图  1  曲壁蜂窝夹层板

    Figure  1.  Curved-wall honeycomb sandwich plate

    图  2  曲壁蜂窝单胞

    Figure  2.  Cell of curved-wall honeycomb

    图  3  曲壁蜂窝的曲梁

    Figure  3.  Curved beam of curved-wall honeycomb

    图  4  蜂窝曲梁受力分析

    Figure  4.  Force analysis of honeycomb curved beam

    图  5  悬臂边界条件下曲壁蜂窝夹层板

    Figure  5.  Cantilever curved-wall honeycomb sandwich plate

    图  6  不同截断数下夹层板的第一阶固有频率

    Figure  6.  The first natural frequency of the sandwich plate with different truncation orders

    图  7  振动试验平台

    Figure  7.  Vibration test platform

    图  8  准静态拉伸试验及试样

    Figure  8.  Quasi-static tensile test and test specimens

    图  9  试验测得的试样的应力−应变曲线

    Figure  9.  Stress-strain curves from test

    图  10  振动试验工况及测点位置

    Figure  10.  Vibration test condition and position of test points

    图  11  蜂窝芯振动试验工况及测点位置

    Figure  11.  Conditions of honeycomb core vibration test and position of test points

    图  12  曲壁蜂窝夹层板有限元模型

    Figure  12.  Finite element model of honeycomb sandwich plate with curved wall

    图  13  有限元模型网格收敛性分析

    Figure  13.  Analysis of mesh convergence of finite element model

    图  14  0~1000 Hz扫频过程中测点响应

    Figure  14.  Response of test point during 0~1000 Hz

    图  15  曲壁蜂窝夹层板在定频驻波试验中的响应

    Figure  15.  Responses of honeycomb sandwich plate in constant frequencies standing wave test

    图  16  曲壁蜂窝夹层板的前5阶固有频率

    Figure  16.  The first 5 order natural frequencies of curved- wall honeycomb sandwich plate

    图  17  试验和有限元模型的扫频频响曲线对比

    Figure  17.  Comparison of sweep frequency curves between test and finite element model

    图  18  曲壁蜂窝夹层板的前3阶振型对比

    Figure  18.  Comparison of the first three modes of honeycomb sandwich plate

    图  19  曲壁蜂窝芯的传递率

    Figure  19.  Transmissibility of curved-wall honeycomb core

    图  20  夹层板在8g正弦波激励下的响应

    Figure  20.  Response of honeycomb sandwich plate excited by 8g sine wave

    表  1  前5阶固有频率结果对比

    Table  1.   Comparison of the first 5 order natural frequencies results

    Frequency/HzVibration order
    1st2nd3rd4th5th
    Theory35.81135.93218.60229.05426.38
    FEM36.13129.24215.82238.53406.53
    error/%0.894.931.044.144.65
    Test32.25149252.25444.25
    error/%9.949.6115.24.19
    下载: 导出CSV

    表  2  不同壁厚夹层板的固有频率

    Table  2.   Natural frequencies of sandwich plate with different wall thicknesses

    Vibration orderThickness/mm
    1.501.752.002.252.50
    1st36.75936.37135.81234.68433.548
    2nd141.789138.584135.934133.138131.985
    3rd222.159219.070218.607215.359207.203
    4th239.694234.894229.055222.481218.335
    5th446.995435.837426.387419.884412.145
    下载: 导出CSV

    表  3  不同曲壁半径夹层板的固有频率

    Table  3.   Natural frequencies of sandwich plate with different curved radius

    Vibration orderRadius/mm
    15.017.520.022.525.0
    1st33.98434.37035.81236.18836.593
    2nd132.039134.094135.934137.163138.517
    3rd213.256214.318218.607219.249220.964
    4th223.894226.731229.055236.473239.395
    5th415.498421.252426.387431.476435.495
    下载: 导出CSV

    表  4  不同曲壁弧度夹层板的固有频率

    Table  4.   Natural frequencies of sandwich plate with different curvature radian

    Vibration orderRadian/(°)
    3045607590
    1st35.81236.48640.33442.98141.093
    2nd135.934139.518153.903155.815156.117
    3rd218.607219.439240.159247.947233.314
    4th229.055233.445248.511253.024240.821
    5th426.387434.681467.185478.395458.317
    下载: 导出CSV
  • [1] 吴文旺, 肖登宝, 孟嘉旭等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望. 力学学报, 2021, 53(3): 611-638 (Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Structural mechanics design, impact resistance and application of negative Poisson's ratio in vehicle engineering. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638 (in Chinese)
    [2] 侯秀慧, 吕游, 周世奇等. 新型负刚度吸能结构力学特性分析. 力学学报, 2021, 53(7): 1940-1950 (Hou Xiuhui, Lü You, Zhou Shiqi, et al. Analysis of mechanical properties of new negative stiffness energy absorbing structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950 (in Chinese) doi: 10.6052/0459-1879-21-083
    [3] Desguers T, Robinson A. An analytical and numerical investigation into conductive-radiative energy transfers in evacuated honeycombs. Application to the optimisation and design of ultra-high temperature thermal insulation. International Journal of Heat and Mass Transfer, 2022, 188: 122578
    [4] 任树伟, 辛锋先, 卢天健. 蜂窝层芯夹层板结构振动与传声特性研究. 力学学报, 2013, 45(3): 349-358 (Ren Shuwei, Xin Fengxian, Lu Tianjian. Study on vibration and sound transmission characteristics of honeycomb core sandwich laminate structure. Chinese journal of theoretical and applied mechanics, 2013, 45(3): 349-358 (in Chinese) doi: 10.6052/0459-1879-12-280
    [5] 尹剑飞, 蔡力, 方鑫等. 力学超材料研究进展与减振降噪应用. 力学进展, 2022, 52(3): 1-78 (Yin Jianfei, Cai Li, Fang Xin, et al. Research progress and application of mechanical metamaterials in vibration and noise reduction. Advances in Mechanics, 2022, 52(3): 1-78 (in Chinese) doi: 10.6052/1000-0992-22-035
    [6] Gbison LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press, 1997: 135-150
    [7] 富明慧, 徐欧腾, 陈誉. 蜂窝芯层等效参数研究综述. 材料导报, 2015, 29(5): 127-134 (Fu Minghui, Xu Oteng, Chen Yu. Review on equivalent parameters of honeycomb core layer. Materials review, 2015, 29(5): 127-134 (in Chinese)
    [8] 杨稳, 张胜兰, 李莹. 蜂窝夹层结构等效模型研究进展. 复合材料科学与工程, 2020, 10: 122-128 (Yang Wen, Zhang Shenglan, Li Ying. Research progress in equivalent models of honeycomb sandwich structures. Composites Science and Engineering, 2020, 10: 122-128 (in Chinese) doi: 10.3969/j.issn.1003-0999.2020.10.017
    [9] 乐京霞, 周智斌, 王思宇等. 箭型蜂窝夹层板力学性能及等效方法研究. 华中科技大学学报(自然科学版), 2021, 49(10): 121-126 (Le Jingxia, Zhou Zhibin, Wang Siyu, et al. Study on mechanical properties and equivalent method of arrow honeycomb sandwich laminate. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(10): 121-126 (in Chinese)
    [10] Liu JL, Liu JY, Mei J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores. Composites Science & Technology, 2018, 159: 87-102
    [11] Ru ZA, Xin RA, Xiang Y, et al. Mechanical properties of concrete composites with auxetic single and layered honeycomb structures. Construction and Building Materials, 2022, 322: 126453 doi: 10.1016/j.conbuildmat.2022.126453
    [12] Albert FG, Giovanni GG, Marco A, et al. Mechanical performance of additively manufactured lightweight cellular solids: influence of cell pattern and relative density on the printing time and compression behavior. Journal of the Mechanics and Physics of Solids, 2019, 122: 1-26 doi: 10.1016/j.jmps.2018.08.022
    [13] Zwab C, Jdab C, Kai L, et al. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Structures, 2022, 171: 108816 doi: 10.1016/j.tws.2021.108816
    [14] Lee N, Horstemeyer MF, Rhee H, et al. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of The Royal Society Interface, 2014, 11(96): 20140274 doi: 10.1098/rsif.2014.0274
    [15] Yang XF, Sun YX, Yang JL, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 2018, 125: 1-11 doi: 10.1016/j.tws.2018.01.014
    [16] Deng X, Liu W. In-plane impact dynamic analysis for a sinusoi-dal curved honeycomb structure with negative Poisson’s ratio. Journal of Vibration and Shock, 2017, 36: 103-109
    [17] Qiu J, Lang JH, Slocum AH. A curved-beam bistable mechanism. Journal of Microelectromechanical Systems, 2004, 13(2): 137-146
    [18] Restrepo D, Mankame ND, Zavattieri PD. Phase transforming cellular material (PXCM) mechanical response and hysteretic behavior comparison with other cellular materials. Extreme Mechanics Letters, 2015, 4: 52-60 doi: 10.1016/j.eml.2015.08.001
    [19] Debeau DA, Seepersad CC, Haberman MR. Impact behavior of negative stiffness honeycomb materials. Journal of Materials Research, 2018, 33: 290-299 doi: 10.1557/jmr.2018.7
    [20] Chen S, Tan XJ, Hu JQ, et al. A novel gradient negative stiffness honeycomb for recoverable energy absorption. Composites Part B: Engineering, 2021, 215: 108745
    [21] Di K, Mao XB. Free flexural vibration of honeycomb sandwich laminate with negative Poisson’s ratio simple supported on opposite edges. Acta Mater Composltae Sinica, 2016, 33: 910-920
    [22] Li C, Shen HS, Wang H. Nonlinear dynamic response of sandwich laminates with functionally graded auxetic 3D lattice core. Nonlinear Dynamics, 2020, 100: 3235-3252 doi: 10.1007/s11071-020-05686-4
    [23] Wu X, Li YG, Cai W, et al. Dynamic responses and energy absorption of sandwich laminate with aluminium honeycomb core under ice wedge impact. International Journal of Impact Engineering, 2022, 162: 104137 doi: 10.1016/j.ijimpeng.2021.104137
    [24] Ma MZ, Yao WX, Jiang W, et al. Fatigue of composite honeycomb sandwich laminates under random vibration load. Composite Structures, 2022, 286: 115296 doi: 10.1016/j.compstruct.2022.115296
    [25] Zhang W, Ma L, Zhang YF, et al. Nonlinear and dual-parameter chaotic vibrations of lumped parameter model in blisk under combined aerodynamic force and varying rotating speed. Nonlinear Dynamics, 2022, 108: 1217-1246
    [26] 陈永清, 仇琨, 李响. 类蜂窝夹层结构振动特性分析及应用研究. 机械, 2022, 49(1): 9-15,36 (Chen Yongqing, Qiu Kun, Li Xiang. Analysis and application of vibration characteristics of honeycomb-like sandwich structures. Mechanical, 2022, 49(1): 9-15,36 (in Chinese)
    [27] Arunkumar MP, Pitchaimani J, Gangadharan KV, et al. Numerical and experimental study on dynamic characteristics of honeycomb core sandwich laminate from equivalent 2D model. Sādhanā, 2020, 45(1): 206
    [28] 闫昭臣, 张君华, 刘彦琦. 不同泊松比蜂窝夹层板的振动实验分析. 应用力学学报, 2021, 38(6): 2256-2261 (Yan Zhaochen, Zhang Junhua, Liu Yanqi. Vibration experimental analysis of honeycomb sandwich laminate with different Poisson ratios. Chinese Journal of Applied Mechanics, 2021, 38(6): 2256-2261 (in Chinese)
    [29] 何贵勤, 曹登庆, 陈帅等. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报, 2021, 53(8): 2312-2322 (He Guiqin, Cao Dengqing, Chen Shuai, et al. Study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322 (in Chinese)
    [30] 杨雨恒, 张周锁, 史文博等. 铝蜂窝夹层板动力学建模仿真与试验验证. 机械设计, 2021, 38(8): 9-16 (Yang Yuheng, Zhang Zhousuo, Shi Wenbo, et al. Dynamic modeling simulation and experimental verification of aluminum honeycomb sandwich Laminate. Journal of Machine Design, 2021, 38(8): 9-16 (in Chinese)
    [31] Reddy JN. Mechanics of Laminated Composite Laminates and Shells: Theory and Analysis. New York: CRC Press, 2004: 110-120
    [32] Dozio L, Carrera E. Ritz analysis of vibrating rectangular and skew multilayered laminates based on advanced variable-kinematic models. Composites Structures, 2012, 94(6): 2118-2128
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  201
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-10
  • 录用日期:  2022-09-19
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回