EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微观结构非均匀性演化的非晶合金应力松弛动力学

郝奇 乔吉超

郝奇, 乔吉超. 基于微观结构非均匀性演化的非晶合金应力松弛动力学. 力学学报, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-255
引用本文: 郝奇, 乔吉超. 基于微观结构非均匀性演化的非晶合金应力松弛动力学. 力学学报, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-255
Hao Qi, Qiao Jichao. Stress relaxation dynamics for amorphous alloys based on the evolution of microstructural heterogeneity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-255
Citation: Hao Qi, Qiao Jichao. Stress relaxation dynamics for amorphous alloys based on the evolution of microstructural heterogeneity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 1-10 doi: 10.6052/0459-1879-22-255

基于微观结构非均匀性演化的非晶合金应力松弛动力学

doi: 10.6052/0459-1879-22-255
基金项目: 国家自然科学基金(51971178)和陕西省杰出青年基金(2021JC-12)资助项目
详细信息
    作者简介:

    乔吉超, 教授, 主要研究方向: 非晶合金的粘弹性力学行为. E-mail: qjczy@nwpu.edu.cn

  • 中图分类号: O344.5

Stress relaxation dynamics for amorphous alloys based on the evolution of microstructural heterogeneity

  • 摘要: 本文研究了Zr48(Cu5/6Ag1/6)44Al8 非晶合金应力松弛行为与固有微观结构非均匀性之间的关联. 非晶合金是典型非平衡固体, 其应力松弛过程伴随着老化效应, 本文首次考虑了经典KWW方程最可几特征时间$\tau $和扩展指数$\beta $在应力松弛过程中的耦合演化, 这表明探究应力松弛过程中应力松弛响应必须考虑结构状态的时间依赖性. 基于所研究非平衡状态非晶合金结构状态的演化, 厘清了非晶合金应力松弛行为中老化效应. 研究结果表明, 非晶合金应力松弛行为具有典型非指数特征, 单一特征时间的指数弛豫形式与有限特征时间的有限谱方法均无法合理描述非晶合金应力松弛实验, 这是由于非晶合金微观结构非均匀性所导致的特征时间谱连续分布. 此外, 非晶合金的名义弹性区域应力松弛行为与初始应变无关, 这主要是因为非晶合金应力松弛行为的流变本质, 即弹性和滞弹性可逆性变形随时间推移逐渐转化为粘塑性不可逆变形. 最后, 考虑了老化效应引起的结构参量演化以及进一步导致的变形行为改变, 应力松弛特征时间随时间逐渐增加, 扩展指数随时间逐渐减小.

     

  • 图  1  Zr48(Cu5/6Ag1/6)44Al8 非晶合金DSC曲线, 升温速率为20 K/min. 插图为X射线衍射图谱.

    Figure  1.  DSC curve of Zr48(Cu5/6Ag1/6)44Al8 metallic glass with a heating rate of 20 K/min. Inset shows the XRD pattern of the model alloy.

    图  2  Zr48(Cu5/6Ag1/6)44Al8 非晶合金在给定应变0.6 %条件下的应力响应. 测试温度为620 K, 加载前保温120 min以使结构状态相对稳定; (a)Debye弛豫模型(公式(1))拟合曲线; (b)和(c)分别为n=2和n=4情况下有限谱模型拟合曲线

    Figure  2.  Stress response of Zr48(Cu5/6Ag1/6)44Al8 metallic glass at a given strain of 0.6 %. The test temperature is 620 K, and the temperature is kept for 120 min before loading to make the structural state relatively stable. (a) Debye model fitting curve (equation (1)); (b) and (c) are the fitting curves of the finite spectrum approach when n=2 and n=4, respectively

    图  3  (a) 非晶合金微观结构非均匀性示意图; (b) 动力学特征时间分布; (c) Zr48(Cu5/6Ag1/6)44Al8 非晶合金在给定应变0.6 %条件下的应力响应. 红色曲线为公式(3)计算曲线, 绿色曲线为特征时间Gauss形式连续谱; (d) 应力松弛实验曲线及KWW方程最小二乘拟合结果.

    Figure  3.  The schematic illustration of microstructural heterogeneity of MG; (b) Distribution of dynamic characteristic time; (c) The stress relaxation data at 620 K was calculated by equation (3), and the corresponding continuous $ \tau $ spectrum was obtained; (d) Comparison between theoretical calculations (lines) and experiments (symbols) for stress relaxation behavior.

    图  4  (a) Zr48(Cu5/6Ag1/6)44Al8 非晶合金不同应变(0.2 %-0.4 %-0.6 %-0.8 %)典型应力松弛曲线. 测试温度为620 K, 加载前保温5 min; (b) 归一化应力松弛曲线${\sigma \mathord{\left/ {\vphantom {\sigma {{\sigma _0}}}} \right. } {{\sigma _0}}}$

    Figure  4.  (a) Typical stress relaxation curves at different given strain (0.2 %-0.4 %-0.6 %-0.8 %). The test temperature is 620 K, and the temperature is kept for 5 min before loading; (b) Normalized stress relaxation curves ${\sigma \mathord{\left/ {\vphantom {\sigma {{\sigma _0}}}} \right. } {{\sigma _0}}}$

    图  5  老化效应. (a)老化导致非晶态固体体积(V)、焓(H)、熵(S)等参量降低和缺陷位点湮灭; (b)归一化储能模量$E'/{E_u}$和损耗模量$E''/{E_u}$随退火时间演化. ${E_u}$为室温未弛豫储能模量; (c)不同退火时间后应力松弛曲线, 测试温度为620 K

    Figure  5.  Aging effect. (a) Evolution of Volume (enthalpy, entropy) and annihilation of defect sites caused by aging; (b) Evolution of normalized storage modulus $E'/{E_u}$ and loss modulus $E''/{E_u}$ during annealing; ${E_u}$ is unrelaxed storage modulus at room temperature; (c) Stress relaxation curves after annealing for different time

    图  6  Zr48(Cu5/6Ag1/6)44Al8 非晶合金在给定应变0.6 %条件下应力松弛曲线, 测试温度为620 K. 红色曲线为采用扩展指数方程的最小二乘拟合

    Figure  6.  Stress relaxation curve at given strain of 0.6 % (experimental temperature is 620 K). The red solid curve is the least square fitting using the KWW equation

    图  7  Zr48(Cu5/6Ag1/6)44Al8 非晶合金在给定应变0.6 %条件下应力松弛演化曲线, 测试温度为620 K, 加载前保温 5 min. 红色曲线为修正KWW方程计算结果. 绿色曲线为根据初始态参量计算曲线

    Figure  7.  Stress relaxation curve at given strain of 0.6 %. The test temperature is 620 K, and the temperature is kept for 5 min before loading. The red solid curve is calculated by the modified KWW equation. The green solid curve is the calculated curve based on the initial state

    图  8  Zr48(Cu5/6Ag1/6)44Al8 非晶合金在给定应变0.6 %条件下特征时间$ \tau \left(t\right) $和扩展指数$ \beta \left(t\right) $随应力松弛时间的演化

    Figure  8.  Evolution of characteristic time $ \tau \left(t\right) $ and stretched exponent $ \beta \left(t\right) $ caused by aging during stress relaxation process

  • [1] 王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗?[J]. 力学学报, 2020, 52(2): 1-15

    Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 1-15 (in chinese)
    [2] 乔吉超, 张浪渟, 童钰, et al. 基于微观结构非均匀性的非晶合金力学行为[J]. 力学进展, 2022, 52(1): 117 doi: 10.6052/1000-0992-21-038

    Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
    [3] Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
    [4] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, 59(6): 2243-2267 doi: 10.1016/j.actamat.2010.11.027
    [5] Khmich A, Hassani A, Sbiaai K, et al. Tuning of mechanical properties of Tantalum-based metallic glasses. International Journal of Mechanical Sciences, 2021: 106546
    [6] Sun BA, Song KK, Pauly S, et al. Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85: 34-51 doi: 10.1016/j.ijplas.2016.06.004
    [7] Zhou HF, Qu SX, Yang W. An atomistic investigation of structural evolution in metallic glass matrix composites. International Journal of Plasticity, 2013, 44: 147-160 doi: 10.1016/j.ijplas.2013.01.002
    [8] Jiang MQ, Ling Z, Meng JX, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine, 2008, 88(3): 407-426 doi: 10.1080/14786430701864753
    [9] Jiang MQ, Wilde G, Dai LH. Origin of stress overshoot in amorphous solids. Mechanics of Materials, 2015, 81: 72-83 doi: 10.1016/j.mechmat.2014.10.002
    [10] Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979, 27(1): 47-58 doi: 10.1016/0001-6160(79)90055-5
    [11] Cheng YT, Hao Q, Pelletier JM, et al. Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass. International Journal of Plasticity, 2021: 103107
    [12] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 4-178

    Wang Weihua. The nature and properties of amorphous mater. Progress in Physics, 2013, 33(5): 4-178 (in chinese)
    [13] Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
    [14] Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
    [15] Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011, 106(12): 125504 doi: 10.1103/PhysRevLett.106.125504
    [16] Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592(7852): 60-64 doi: 10.1038/s41586-021-03354-0
    [17] Nomoto K, Ceguerra AV, Gammer C, et al. Medium-range order dictates local hardness in bulk metallic glasses. Materials Today, 2021, 44: 48-57 doi: 10.1016/j.mattod.2020.10.032
    [18] Zhu F, Song SX, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9(1): 3965 doi: 10.1038/s41467-018-06476-8
    [19] Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Progress in Materials Science, 2011, 56(4): 379-473 doi: 10.1016/j.pmatsci.2010.12.002
    [20] Tang CG, Harrowell P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Materials, 2013, 12(6): 507-511 doi: 10.1038/nmat3631
    [21] Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nature Materials, 2011, 10(6): 439-442 doi: 10.1038/nmat3024
    [22] Fujita T, Guan PF, Sheng HW, et al. Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Physical Review B, 2010, 81(14): 140204 doi: 10.1103/PhysRevB.81.140204
    [23] Zhu ZG, Wen P, Wang DP, et al. Characterization of flow units in metallic glass through structural relaxations. Journal of Applied Physics, 2013, 114(8): 083512 doi: 10.1063/1.4819484
    [24] Wang Z, Wang W-H. Flow units as dynamic defects in metallic glassy materials. National Science Review, 2019, 6(2): 304-323 doi: 10.1093/nsr/nwy084
    [25] Turnbull D, Cohen MH. On the free‐volume model of the iquid‐glass transition. The Journal of Chemical Physics, 1970, 52(6): 3038-3041 doi: 10.1063/1.1673434
    [26] Perez J. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics, 1990, 39(1): 69-79
    [27] Cheng YT, Hao Q, Qiao JC, et al. Effect of minor addition on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids, 2021, 553: 120496 doi: 10.1016/j.jnoncrysol.2020.120496
    [28] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25(4): 407-415 doi: 10.1016/0001-6160(77)90232-2
    [29] Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 1998, 57(6): 7192-7205 doi: 10.1103/PhysRevE.57.7192
    [30] Yang Y, Zeng JF, Volland A, et al. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Materialia, 2012, 60(13-14): 5260-5272 doi: 10.1016/j.actamat.2012.06.025
    [31] Ke HB, Zeng JF, Liu C T, et al. Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 2014, 30(6): 560-565 doi: 10.1016/j.jmst.2013.11.014
    [32] Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561 doi: 10.1016/j.pmatsci.2019.03.006
    [33] Hao Q, Qiao JC, Goncharova EV, et al. Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass. Chinese Physics B, 2020, 29(8): 086402 doi: 10.1088/1674-1056/ab969c
    [34] Debye P. Polar Molecules. Chemical Catalog Company, New York 1929
    [35] Jiao W, Wen P, Peng HL, et al. Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102(10): 101903 doi: 10.1063/1.4795522
    [36] Taub A, Spaepen F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. Journal of Materials Science, 1981, 16(11): 3087-3092 doi: 10.1007/BF00540316
    [37] Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
    [38] Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010, 9(8): 619-623 doi: 10.1038/nmat2802
    [39] Atzmon M, Ju JD. Microscopic description of flow defects and relaxation in metallic glasses. Physical Review E, 2014, 90(4): 042313 doi: 10.1103/PhysRevE.90.042313
    [40] Liu ZY, Yang Y. A mean-field model for anelastic deformation in metallic-glasses. Intermetallics, 2012, 26: 86-90 doi: 10.1016/j.intermet.2012.03.052
    [41] Casalini R, Roland CM. Aging of the Secondary Relaxation to Probe Structural Relaxation in the Glassy State. Physical Review Letters, 2009, 102(3): 035701 doi: 10.1103/PhysRevLett.102.035701
    [42] Palmer RG, Stein DL, Abrahams E, et al. Models of hierarchically constrained dynamics for glassy relaxation. Physical Review Letters, 1984, 53(10): 958-961 doi: 10.1103/PhysRevLett.53.958
    [43] Perez J. Physics and mechanics of amorphous polymers. CRC Press1998
  • 加载中
图(8)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 录用日期:  2022-08-04
  • 网络出版日期:  2022-07-31

目录

    /

    返回文章
    返回