EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习建表的宽域发动机火焰面燃烧模型构建与验证

于江飞 连城阅 汤涛 唐卓 汪洪波 孙明波

于江飞, 连城阅, 汤涛, 唐卓, 汪洪波, 孙明波. 基于深度学习建表的宽域发动机火焰面燃烧模型构建与验证. 力学学报, 待出版 doi: 10.6052/0459-1879-23-403
引用本文: 于江飞, 连城阅, 汤涛, 唐卓, 汪洪波, 孙明波. 基于深度学习建表的宽域发动机火焰面燃烧模型构建与验证. 力学学报, 待出版 doi: 10.6052/0459-1879-23-403
Yu Jiangfei, Lian Chengyue, Tang Tao, Tang Zhuo, Wang Hongbo, Sun Mingbo. Construction and validation of a wide-domain engine flamelet combustion model based on deep learning table building. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-403
Citation: Yu Jiangfei, Lian Chengyue, Tang Tao, Tang Zhuo, Wang Hongbo, Sun Mingbo. Construction and validation of a wide-domain engine flamelet combustion model based on deep learning table building. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-23-403

基于深度学习建表的宽域发动机火焰面燃烧模型构建与验证

doi: 10.6052/0459-1879-23-403
基金项目: 国家自然科学基金项目(T2221002、11925207)资助
详细信息
    通讯作者:

    于江飞, 副研究员, 主要研究方向为超声速流动与燃烧数值仿真. E-mail: jiangfeiyu@nudt.edu.cn

    汪洪波, 研究员, 主要研究方向为高超声速推进技术. E-mail: whbwatch@nudt.edu.cn

  • 中图分类号: V19

CONSTRUCTION AND VALIDATION OF A WIDE-DOMAIN ENGINE FLAMELET COMBUSTION MODEL BASED ON DEEP LEARNING TABLE BUILDING

  • 摘要: 以新型宽域发动机为动力的未来新一代飞行器的研发迫切需要CFD方法来进行高效高精度的辅助设计. 本文把传统的火焰面/进度变量燃烧模型与深度学习和神经网络方法相结合, 构建了新的智能化改进的燃烧模型并进行了算例测试与验证, 在保证计算效率的同时提高了预测精度. 首先, 给出了人工神经网络的构建方法, 包括数据库划分、数据归一化以及模型的训练等; 然后, 测试分析了不同函数结构对新建模型的影响, 并讨论了基于CPU和GPU的求解器框架下内存占用优化问题; 最后, 把智能化模型耦合到GPU求解器上对飞行马赫数4-12的3个发动机算例进行了数值模拟. 结果表明, 智能化改进的模型可代替传统火焰面/进度变量数据库从而实现高维参数建模及模型改进, 并可以成功运行在GPU上; 智能化改进的模型比传统的模型平均误差减小量均超过了50%, 算例误差最大减小值可达57.2%.

     

  • 图  1  神经元节点数对释热率HRR模型精度的影响

    Figure  1.  The effect of the number of neuron nodes on the precision of the heat release rate HRR model

    图  2  神经元节点数对进度变量源QC模型精度的影响

    Figure  2.  The effect of the number of neuron nodes on the precision of the source term QC model for progress variable equation

    图  3  神经元节点数对模型拟合效果的影响

    Figure  3.  The effect of the number of neuron nodes on model fitting performance

    图  4  不同损失函数对模型精度的影响

    Figure  4.  The effect of different loss functions on the model accuracy

    图  5  损失函数对模型拟合效果的影响 (续)

    Figure  5.  The effect of loss function on model fitting performance (continued)

    图  6  学习率调制器对模型精度的影响

    Figure  6.  The effect of learning rate modulators on model accuracy

    图  7  O2、HRR和QC的回归图

    Figure  7.  Regression plot of O2, HRR, and QC

    图  8  M12-02燃烧室构型

    Figure  8.  M12-02 combustion chamber configuration

    图  9  超混合喷嘴尺寸

    Figure  9.  Hyper-mixer injector size

    图  10  算例1流向中心截面上传统模型(上)与智能化改进模型(下)计算温度云图

    Figure  10.  Case 1: Temperature contour in the flow direction center section calculated using traditional model (up) and intelligent improved model (down)

    图  11  算例1壁面压力沿程分布计算与实验结果对比图(平均误差减小53.2%)

    Figure  11.  Comparison between calculated and experimental results of wall pressure distribution along the flow path for Case 1 (Average error reduction is 53.2%)

    图  12  算例2圆管燃烧室的总体构造和具体尺寸

    Figure  12.  Case 2: Overall structure and specific dimensions of the circular tube combustor

    图  13  算例2流向中心截面传统模型(上)与智能化改进模型(下)计算温度云图

    Figure  13.  Case 2: Temperature contour in the flow direction center section calculated using traditional model (up) and intelligent improved model (down)

    图  14  算例2壁面压力沿程分布计算与实验结果对比图(平均误差减小55.7%)

    Figure  14.  Comparison between calculated and experimental results of wall pressure distribution along the flow path for Case 2 (Average error reduction is 55.7%)

    图  15  算例3氢气凹腔燃烧室构型示意图

    Figure  15.  Case 3: Schematic diagram of the configuration of the hydrogen-fueled cavity combustion chamber

    图  16  算例3流向中心截面传统模型(上)与智能化改进模型(下)计算温度云图

    Figure  16.  Case 3: Temperature contour in the flow direction center section calculated using traditional model (up) and intelligent improved model (down)

    图  17  算例3壁面压力沿程分布计算与实验结果对比图(平均误差减小57.2%)

    Figure  17.  Comparison between calculated and experimental results of wall pressure distribution along the flow path for Case 3 (Average error reduction is 57.2%)

    表  1  M12-02实验超声速来流和燃料射流工况

    Table  1.   Supersonic inflow and fuel jet conditions for M12-02 Experiment

    MaP/kPaT/KYO2YN2YH2
    Inflow6.724.06770.20310.79690.0
    Jet1.021002500.00.01.0
    下载: 导出CSV

    表  2  算例1误差减小情况表(飞行Ma12、计算入口Ma6.72、平均误差减小53.2%)

    Table  2.   Error reduction in Case 1 for intelligent improved combustion model (ANN-FPV) compared with tranditional model (FPV) (with flight Ma12, inlet Ma6.72 and average error reduction 53.2%)

    点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值 点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值
    1 325 74.3% 74.8% −0.7% 19 1729 18.6% 22.2% −19.3%
    2 529 47.5% 47.3% 0.4% 20 1780 31.8% 1.5% 95.2%
    3 590 13.7% 13.3% 2.6% 21 1836 26.7% 1.4% 94.7%
    4 625 26.3% 26.0% 1.1% 22 1892 31.5% 9.3% 70.6%
    5 753 98.5% 100.0% −1.6% 23 1937 38.4% 16.2% 57.8%
    6 885 66.2% 11.7% 82.3% 24 1983 36.3% 11.2% 69.1%
    7 986 79.3% 75.5% 4.8% 25 2034 27.6% 0.1% 99.7%
    8 1078 35.5% 1.8% 95.0% 26 2090 27.2% 2.9% 89.2%
    9 1225 28.4% 36.1% −27.1% 27 2131 21.9% 1.7% 92.4%
    10 1281 37.4% 12.9% 65.5% 28 2176 17.6% 6.6% 62.4%
    11 1332 52.1% 23.0% 55.8% 29 2242 16.5% 9.0% 45.2%
    12 1388 33.9% 2.1% 94.0% 30 2278 17.7% 6.8% 61.4%
    13 1434 28.2% 3.1% 88.9% 31 2324 17.7% 4.1% 76.9%
    14 1475 35.6% 5.9% 83.4% 32 2380 17.9% 0.6% 96.9%
    15 1525 34.5% 4.8% 86.0% 33 2441 12.2% 7.3% 39.8%
    16 1581 15.5% 14.9% 3.5% 34 2583 45.5% 37.4% 17.8%
    17 1622 33.1% 9.5% 71.4% 35 2624 52.6% 41.5% 21.1%
    18 1673 29.4% 1.1% 96.3% 36 2685 40.4% 23.1% 42.7%
    下载: 导出CSV

    表  3  算例2圆管燃烧室工况

    Table  3.   Case 2: Operating conditions of the circular tube combustor

    马赫数静压/kPa静温/KYO2YN2YC2 H4
    来流4.50.554440.2330.7670.0
    燃料流1.057.12500.00.01.0
    下载: 导出CSV

    表  4  算例2误差减小情况表(飞行Ma8、计算入口Ma4.5、平均误差减小55.7%)

    Table  4.   Error reduction in Case 2 for intelligent improved combustion model (ANN-FPV) compared with tranditional model (FPV) (with flight Ma8.0, inlet Ma4.5 and average error reduction 55.7%)

    点序列x / mmFPV模型误差ANN-FPV模型误差误差减小值
    15318.0%18.8%−4.7%
    2979.8%8.4%14.6%
    317216.6%16.0%3.7%
    424617.2%15.6%8.9%
    5346128.2%17.5%86.3%
    636950.2%4.1%91.8%
    740043.7%19.4%55.6%
    841736.2%12.1%66.5%
    943345.9%15.6%65.9%
    1044765.1%6.8%89.5%
    1151096.3%4.2%95.7%
    1266069.8%3.6%94.9%
    下载: 导出CSV

    表  5  算例3氢气凹腔燃烧室算例工况

    Table  5.   Case 3: Operating conditions of the hydrogen-fueled cavity combustion chamber

    马赫数总压/kPa总温/KYO2YN2YH2 OYH2
    来流2.08209500.210.670.120.0
    燃料流1.040003000.00.00.01.0
    下载: 导出CSV

    表  6  算例3误差减小情况表(飞行Ma4.0、计算入口Ma2.0、平均误差减小57.2%)

    Table  6.   Error reduction in Case 3 for intelligent improved combustion model (ANN-FPV) compared with tranditional model (FPV) (with flight Ma4.0, inlet Ma2.0 and average error reduction 57.2%)

    点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值 点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值
    1 11 1.0% 1.0% −0.1% 21 429 16.6% 15.3% 7.9%
    2 90 56.8% 0.4% 99.4% 22 449 22.3% 11.4% 49.0%
    3 114 73.9% 21.9% 70.3% 23 469 23.5% 11.7% 50.1%
    4 131 26.2% 9.8% 62.6% 24 489 23.0% 10.6% 53.7%
    5 150 28.3% 6.8% 76.0% 25 510 21.7% 11.0% 49.2%
    6 172 29.4% 6.2% 79.0% 26 526 23.8% 13.1% 45.0%
    7 189 23.0% 8.5% 63.2% 27 547 24.0% 12.4% 48.3%
    8 210 20.7% 10.0% 51.9% 28 569 36.4% 3.0% 91.8%
    9 227 20.3% 7.7% 61.9% 29 588 46.3% 6.2% 86.7%
    10 251 19.6% 4.7% 76.0% 30 732 24.4% 8.7% 64.5%
    11 272 20.6% 0.5% 97.5% 31 762 19.6% 4.3% 78.1%
    12 291 3.8% 6.1% −63.2% 32 791 55.2% 12.0% 78.3%
    13 309 22.0% 8.3% 62.0% 33 821 134.5% 60.2% 55.2%
    14 330 14.7% 12.1% 17.9% 34 848 147.3% 70.6% 52.1%
    15 348 13.3% 8.0% 40.0% 35 907 165.3% 77.0% 53.4%
    16 370 14.7% 4.6% 68.7% 36 935 145.3% 68.3% 53.0%
    17 372 24.3% 3.1% 87.1% 37 965 102.1% 44.4% 56.5%
    18 391 14.5% 4.7% 67.5% 38 993 122.0% 65.4% 46.4%
    19 402 59.2% 31.8% 46.4% 39 1022 72.6% 37.4% 48.5%
    20 407 18.9% 1.1% 94.2% 40 1051 52.4% 19.7% 62.5%
    下载: 导出CSV

    表  7  三个算例的燃烧模型CFD结果(时间消耗值、内存占用值及精度提升值)

    Table  7.   CFD results of three cases under two combustion models (time consumption value, memory occupancy value, and accuracy improvement value)

    算例1算例2算例3
    燃烧模型CFD结果FPVFPV-ANNFPVFPV-ANNFPVFPV-ANN
    耗时(s)/100步61.1211.171.1%54.2179.869.9%43.7138.568.4%
    内存占用(GB)16.721.120.9%12.917.225.0%10.414.829.8%
    精度提高值53.2%55.7%57.2%
    下载: 导出CSV
  • [1] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science, 1984, 10(3): 319-339
    [2] 孙明波, 白雪松, 王振国, 湍流燃烧火焰面模式理论及应用, 北京: 科学出版社, 2014 (Sun Mingbo, Bai Xuesong, Wang Zhenguo. Theory and Application of Flamelet Model in Turbulent Combustion. Beijing: Science Press, 2014 (in Chinese)

    Sun Mingbo, Bai Xuesong, Wang Zhenguo. Theory and Application of Flamelet Model in Turbulent Combustion. Beijing: Science Press, 2014 (in Chinese)
    [3] 孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面模式研究综述, 力学进展, 2010 40(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Evaluation of Partially Premixed Flamelet Approach in Supersonic Combustion. Advances in Mechanics, 2010 40(6): 634-641 (in Chinese)

    Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Evaluation of Partially Premixed Flamelet Approach in Supersonic Combustion. Advances in Mechanics, 2010 40(6): 634-641 (in Chinese)
    [4] 汪洪波, 连城阅, 张锦成等. 回流区稳定燃烧的近熄火特性理论分析, 力学学报, 2023 55(9): 1-7 (Wang Hongbo, Lian Chengyue, Zhang Jincheng, et al. A theoretical study on near-blowoff characteristics of recirculation-zone stabilized combustion. Chinese Journal of Theoretical and Applied Mechanics, 2023 55 55(9): 1-7 (in Chinese)

    Wang Hongbo, Lian Chengyue, Zhang Jincheng, et al. A theoretical study on near-blowoff characteristics of recirculation-zone stabilized combustion. Chinese Journal of Theoretical and Applied Mechanics, 2023 55 55(9): 1-7 (in Chinese)
    [5] 时文, 田野, 郭明明等. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报, 2022, 54(3): 10 (Shi Wen, Tian Ye, Guo Mingming et al. Investigation of flow characteristics and flame stabilization in an ethylene-fueled scramjet combustor. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 10 (in Chinese)

    Shi Wen, Tian Ye, Guo Mingming et al. Investigation of flow characteristics and flame stabilization in an ethylene-fueled scramjet combustor. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 10 (in Chinese)
    [6] Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling, Aerospace Science and Technology, 2000, 4(7): 463-480
    [7] Saghafian A, Terrapon V E, Pitsch H. An efficient flamelet-based combustion model for compressible flows. Combustion and Flame, 2015, 162(3): 652-667 doi: 10.1016/j.combustflame.2014.08.007
    [8] Tao T, Wang Z, Huang Y, et al. Flamelet-like models applied in scramjet combustors: A state of art and prospect. Chinese Journal of Aeronautics, 2023, 36(10): 24-43 doi: 10.1016/j.cja.2023.07.036
    [9] Niu J, Piao Y. Numerical simulation of liquid kerosene combustion in a dual-mode scramjet combustor using flamelet/progress variable approach//46th AIAA Fluid Dynamics Conference. 2016: 3959
    [10] Cao C, Ye T, Zhao M. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach. Chinese Journal of Aeronautics, 2015, 28(5): 1316-1327 doi: 10.1016/j.cja.2015.08.008
    [11] Tang T, Yu J, Wang Z, et al. An improved flamelet/progress variable modeling in a hydrogen-fueled scramjet. International Journal of Hydrogen Energy, 2023
    [12] Shan F, Hou L, Chen Z, et al. Linearized correction to a flamelet-based model for hydrogen-fueled supersonic combustion. International Journal of Hydrogen Energy, 2017, 42(16): 11937-11944 doi: 10.1016/j.ijhydene.2017.02.100
    [13] Shan F, Zhang D, Hou L, et al. An improved flamelet/progress variable modeling for supersonic combustion. International Journal of Hydrogen Energy, 2021, 46(5): 4485-4495 doi: 10.1016/j.ijhydene.2020.10.225
    [14] Wang H, Shan F, Piao Y et al. IDDES simulation of hydrogen-fueled supersonic combustion using flamelet modeling. International Journal of Hydrogen Energy, 2015, 40(1): 683-691 doi: 10.1016/j.ijhydene.2014.10.124
    [15] 范周琴, 超声速湍流燃烧火焰面模型判别, 建模及应用研究. [博士论文]. 长沙: 国防科学技术大学, 2011 (Fan Zhouqin. Investigation of Validation, Modeling and Application of Flamelet model in Supersonic Turbulent Combustion. [PhD Thesis]. Changsha: National University of Defense Technology, 2011 (in Chinese)

    Fan Zhouqin. Investigation of Validation, Modeling and Application of Flamelet model in Supersonic Turbulent Combustion. [PhD Thesis]. Changsha: National University of Defense Technology, 2011 (in Chinese)
    [16] 赵国焱, 超声速湍流扩散燃烧火焰面模型修正及应用研究. [硕士论文]. 长沙: 国防科学技术大学, 2015 (Zhao Guoyan. Modification and Application of Turbulent Diffusion Flamelet Model in Supersonic Combustion Flow. [Master Thesis]. Changsha: National University of Defense Technology, 2015 (in Chinese)

    Zhao Guoyan. Modification and Application of Turbulent Diffusion Flamelet Model in Supersonic Combustion Flow. [Master Thesis]. Changsha: National University of Defense Technology, 2015 (in Chinese)
    [17] 杨越, 游加平, 孙明波等. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型, 航空学报, 2015, 36(1): 261-273 (Yang Yue, You Jiaping, Sun Mingbo, et al. Modeling of turbulence chemistry interactions in numerical simulations of supersonic combustion. Acta Aeronautica et Asironautica Sinica, 2015, 36(1): 261-273 (in Chinese)

    Yang Yue, You Jiaping, Sun Mingbo, et al. Modeling of turbulence chemistry interactions in numerical simulations of supersonic combustion. Acta Aeronautica et Asironautica Sinica, 2015, 36(1): 261-273 (in Chinese)
    [18] 张锦成, 王振国, 孙明波等. 高马赫数下超声速燃烧的自点火查表方法, 力学学报, 54 (2022) 1548 (Zhang Jincheng, Wang Zhenguo, Sun Mingbo, et al. Auto-ignition tabulated method for supersonic combustion at high Mach number. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1548-1556 (in Chinese)

    2022) 1548 (Zhang Jincheng, Wang Zhenguo, Sun Mingbo, et al. Auto-ignition tabulated method for supersonic combustion at high Mach number. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1548-1556 (in Chinese)
    [19] Rao C, Sun H, Liu Y. Physics-informed deep learning for incompressible laminar flows. Theoretical and Applied Mechanics Letters, 2020, 10(3): 207-212 doi: 10.1016/j.taml.2020.01.039
    [20] Meng Q, Jiang Z, Wang J. Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow. Theoretical and Applied Mechanics Letters, 2023, 13(1): 100399 doi: 10.1016/j.taml.2022.100399
    [21] 陈皓, 郭明明, 田野等. 卷积神经网络在流场重构研究中的进展, 力学学报, 54 (2022) 2343 (Chen Hao, Guo Mingming, Tian Ye, et al. Progress of convolution neural networks in flow field reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese)

    2022) 2343 (Chen Hao, Guo Mingming, Tian Ye, et al. Progress of convolution neural networks in flow field reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese)
    [22] 陈尔达, 宋昊宇, 郭明明等. 基于“分段−组合”残差神经网络的超声速氢气零维点火计算方法[J/OL]. 推进技术: 1-15 [2023-08-23] https://doi.org/10.13675/j.cnki.tjjs.2208105. (in Chinese) (Chen Erda, Song Haoyu, Guo Mingming, et al. Calculation Method of Supersonic Hydrogen Zero-Dimensional Ignition based on Segmentation-Combination Residual Neural Network [J/OL]. Journal of Propulsion Technology: 1-15 [2023-08-23] https://doi.org/10.13675/j.cnki.tjjs.2208105. (in Chinese)

    Chen Erda, Song Haoyu, Guo Mingming, et al. Calculation Method of Supersonic Hydrogen Zero-Dimensional Ignition based on Segmentation-Combination Residual Neural Network [J/OL]. Journal of Propulsion Technology: 1-15 [2023-08-23] https://doi.org/10.13675/j.cnki.tjjs.2208105. (in Chinese)
    [23] Mingming Guo, Hao Chen, Ye Tian, Yi Zhang, etc. Flame reconstruction of hydrogen fueled-scramjet combustor based on multi-source information fusion[J]. International Journal of Hydrogen Energy, 2023. DOI: 10.1016/j.ijhydene.2023.04.311
    [24] https://baike.baidu.com/item/盘古大模型/62824081
    [25] Flemming F, Sadiki A, Janicka J. LES using artificial neural networks for chemistry representation. Progress in Computational Fluid Dynamics, An International Journal, 2005, 5(7): 375-385 doi: 10.1504/PCFD.2005.007424
    [26] Kempf A, Flemming F, Janicka J. Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proceedings of the Combustion Institute, 2005, 30(1): 557-565 doi: 10.1016/j.proci.2004.08.182
    [27] Ihme M, Schmitt C, Pitsch H. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proceedings of the Combustion Institute, 2009, 32(1): 1527-1535 doi: 10.1016/j.proci.2008.06.100
    [28] Ihme M, Marsden A L, Pitsch H. Generation of optimal artificial neural networks using a pattern search algorithm: Application to approximation of chemical systems. Neural Computation, 2008, 20(2): 573-601 doi: 10.1162/neco.2007.08-06-316
    [29] Owoyele O, Kundu P, Ameen MM, et al. Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames. International Journal of Engine Research, 2020, 21(1): 151-168 doi: 10.1177/1468087419837770
    [30] Zhang Y, Xu S, Zhong S, et al. Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks. Energy and AI, 2020, 2: 100021 doi: 10.1016/j.egyai.2020.100021
    [31] 高正伟, 金台, 宋昌成等. 基于人工神经网络的超临界小火焰模型研究, 浙江大学学报(工学版), 2021, 55(10): 1968-1977 (Gao Zhengwei, Jin Tai, Song Changcheng, et al. Application of artificial neural networks to supercritical flamelet model. Journal of Zhejiang University(Engineering Science), 2021, 55(10): 1968-1977 (in Chinese)

    Gao Zhengwei, Jin Tai, Song Changcheng, et al. Application of artificial neural networks to supercritical flamelet model. Journal of Zhejiang University(Engineering Science), 2021, 55(10): 1968-1977 (in Chinese)
    [32] Demir S, Kundu P, Owoyele O. Implementation of high dimensional flamelet manifolds for supersonic combustion using deep neural networks//AIAA AVIATION 2020 FORUM. 2020: 3059
    [33] Bhalla S, Yao M, Hickey JP, et al. Compact representation of a multi-dimensional combustion manifold using deep neural networks//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2019: 602-617
    [34] Zhang J, Huang H, Xia Z, et al. Artificial neural networks for chemistry representation in numerical simulation of the flamelet-based models for turbulent combustion. IEEE Access, 2020, 8: 80020-80029 doi: 10.1109/ACCESS.2020.2990943
    [35] Rumelhart DE, McClelland JL. Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations. MIT press, 1986
    [36] Liu Y, He X, Xue R, et al. Numerical simulation of the interaction between shock train and combustion in three-dimensional M12-02 scramjet model. International Journal of Hydrogen Energy, 2022, 47(12): 8026-8036 doi: 10.1016/j.ijhydene.2021.12.126
    [37] 何粲, 邢建文, 欧阳浩等. 飞行 Ma12 条件超燃发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632 (He Can, Xing Jianwen, Ouyang hao et al. Flow Field and Combustion Characteristics Analysis of Scramjet Under Ma12 Flight Condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632 (in Chinese)

    He Can, Xing Jianwen, Ouyang hao et al. Flow Field and Combustion Characteristics Analysis of Scramjet Under Ma12 Flight Condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632 (in Chinese)
    [38] Liu Q, Baccarella D, Landsberg W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows. Proceedings of the combustion institute, 2019, 37(3): 3733-3740 doi: 10.1016/j.proci.2018.08.037
    [39] 钟富宇, 乐嘉陵, 田野等. 乙烯燃料超燃冲压发动机燃烧过程研究. 实验流体力学, 2021, 35(1): 34-43 (Zhong Fuyu, Le Jialing, Tian Ye, et al. Investigation of the combustion processin an ethylene-fueled scramjet combustor. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43 (in Chinese) doi: 10.11729/syltlx20200093

    Zhong Fuyu, Le Jialing, Tian Ye, et al. Investigation of the combustion processin an ethylene-fueled scramjet combustor. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43 (in Chinese) doi: 10.11729/syltlx20200093
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 录用日期:  2023-11-17
  • 网络出版日期:  2023-11-21

目录

    /

    返回文章
    返回