CONSTRUCTION AND VALIDATION OF A WIDE-DOMAIN ENGINE FLAMELET COMBUSTION MODEL BASED ON DEEP LEARNING TABLE BUILDING
-
摘要: 以新型宽域发动机为动力的未来新一代飞行器的研发迫切需要CFD方法来进行高效高精度的辅助设计. 本文把传统的火焰面/进度变量燃烧模型与深度学习和神经网络方法相结合, 构建了新的智能化改进的燃烧模型并进行了算例测试与验证, 在保证计算效率的同时提高了预测精度. 首先, 给出了人工神经网络的构建方法, 包括数据库划分、数据归一化以及模型的训练等; 然后, 测试分析了不同函数结构对新建模型的影响, 并讨论了基于CPU和GPU的求解器框架下内存占用优化问题; 最后, 把智能化模型耦合到GPU求解器上对飞行马赫数4-12的3个发动机算例进行了数值模拟. 结果表明, 智能化改进的模型可代替传统火焰面/进度变量数据库从而实现高维参数建模及模型改进, 并可以成功运行在GPU上; 智能化改进的模型比传统的模型平均误差减小量均超过了50%, 算例误差最大减小值可达57.2%.
-
关键词:
- 火焰面/进度变量模型 /
- 全连接神经网络 /
- 宽域发动机 /
- 燃烧模型 /
- 数值模拟
Abstract: The development of future next-generation aircraft powered by a new wide domain engine urgently requires CFD methods for efficient and high-precision auxiliary design. This article combines the traditional flamelet /progress variable combustion model with deep learning and neural network methods to construct a new intelligent improved combustion model, which is tested and validated by numerical cases. This improves the prediction accuracy while ensuring computational efficiency. Firstly, the construction method of the artificial neural network in this article were proposed in details, including database partitioning, data normalization, and model training; Then, the impact of different function structures on the new model was tested and analyzed, and the optimization of memory usage under the CPU and GPU based solver framework was discussed; Finally, the intelligent model was coupled to a GPU solver for numerical simulation of three engine cases with flight Mach numbers 4-12. The results show that the intelligent improved model can replace the traditional flame surface/progress variable database to achieve high-dimensional parameter modeling and model improvement, and can successfully run on GPU; The intelligent improved model has an average error reduction of over 50% compared to traditional models for all mentioned cases, and the maximum reduction in case error can reach 57.2%. -
表 1 M12-02实验超声速来流和燃料射流工况
Table 1. Supersonic inflow and fuel jet conditions for M12-02 Experiment
Ma P/kPa T/K YO2 YN2 YH2 Inflow 6.72 4.0 677 0.2031 0.7969 0.0 Jet 1.0 2100 250 0.0 0.0 1.0 表 2 算例1误差减小情况表(飞行Ma12、计算入口Ma6.72、平均误差减小53.2%)
Table 2. Error reduction in Case 1 for intelligent improved combustion model (ANN-FPV) compared with tranditional model (FPV) (with flight Ma12, inlet Ma6.72 and average error reduction 53.2%)
点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值 点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值 1 325 74.3% 74.8% −0.7% 19 1729 18.6% 22.2% −19.3% 2 529 47.5% 47.3% 0.4% 20 1780 31.8% 1.5% 95.2% 3 590 13.7% 13.3% 2.6% 21 1836 26.7% 1.4% 94.7% 4 625 26.3% 26.0% 1.1% 22 1892 31.5% 9.3% 70.6% 5 753 98.5% 100.0% −1.6% 23 1937 38.4% 16.2% 57.8% 6 885 66.2% 11.7% 82.3% 24 1983 36.3% 11.2% 69.1% 7 986 79.3% 75.5% 4.8% 25 2034 27.6% 0.1% 99.7% 8 1078 35.5% 1.8% 95.0% 26 2090 27.2% 2.9% 89.2% 9 1225 28.4% 36.1% −27.1% 27 2131 21.9% 1.7% 92.4% 10 1281 37.4% 12.9% 65.5% 28 2176 17.6% 6.6% 62.4% 11 1332 52.1% 23.0% 55.8% 29 2242 16.5% 9.0% 45.2% 12 1388 33.9% 2.1% 94.0% 30 2278 17.7% 6.8% 61.4% 13 1434 28.2% 3.1% 88.9% 31 2324 17.7% 4.1% 76.9% 14 1475 35.6% 5.9% 83.4% 32 2380 17.9% 0.6% 96.9% 15 1525 34.5% 4.8% 86.0% 33 2441 12.2% 7.3% 39.8% 16 1581 15.5% 14.9% 3.5% 34 2583 45.5% 37.4% 17.8% 17 1622 33.1% 9.5% 71.4% 35 2624 52.6% 41.5% 21.1% 18 1673 29.4% 1.1% 96.3% 36 2685 40.4% 23.1% 42.7% 表 3 算例2圆管燃烧室工况
Table 3. Case 2: Operating conditions of the circular tube combustor
马赫数 静压/kPa 静温/K YO2 YN2 YC2 H4 来流 4.5 0.55 444 0.233 0.767 0.0 燃料流 1.0 57.1 250 0.0 0.0 1.0 表 4 算例2误差减小情况表(飞行Ma8、计算入口Ma4.5、平均误差减小55.7%)
Table 4. Error reduction in Case 2 for intelligent improved combustion model (ANN-FPV) compared with tranditional model (FPV) (with flight Ma8.0, inlet Ma4.5 and average error reduction 55.7%)
点序列 x / mm FPV模型误差 ANN-FPV模型误差 误差减小值 1 53 18.0% 18.8% −4.7% 2 97 9.8% 8.4% 14.6% 3 172 16.6% 16.0% 3.7% 4 246 17.2% 15.6% 8.9% 5 346 128.2% 17.5% 86.3% 6 369 50.2% 4.1% 91.8% 7 400 43.7% 19.4% 55.6% 8 417 36.2% 12.1% 66.5% 9 433 45.9% 15.6% 65.9% 10 447 65.1% 6.8% 89.5% 11 510 96.3% 4.2% 95.7% 12 660 69.8% 3.6% 94.9% 表 5 算例3氢气凹腔燃烧室算例工况
Table 5. Case 3: Operating conditions of the hydrogen-fueled cavity combustion chamber
马赫数 总压/kPa 总温/K YO2 YN2 YH2 O YH2 来流 2.0 820 950 0.21 0.67 0.12 0.0 燃料流 1.0 4000 300 0.0 0.0 0.0 1.0 表 6 算例3误差减小情况表(飞行Ma4.0、计算入口Ma2.0、平均误差减小57.2%)
Table 6. Error reduction in Case 3 for intelligent improved combustion model (ANN-FPV) compared with tranditional model (FPV) (with flight Ma4.0, inlet Ma2.0 and average error reduction 57.2%)
点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值 点序列 x/mm FPV模型误差 ANN-FPV模型误差 误差减小值 1 11 1.0% 1.0% −0.1% 21 429 16.6% 15.3% 7.9% 2 90 56.8% 0.4% 99.4% 22 449 22.3% 11.4% 49.0% 3 114 73.9% 21.9% 70.3% 23 469 23.5% 11.7% 50.1% 4 131 26.2% 9.8% 62.6% 24 489 23.0% 10.6% 53.7% 5 150 28.3% 6.8% 76.0% 25 510 21.7% 11.0% 49.2% 6 172 29.4% 6.2% 79.0% 26 526 23.8% 13.1% 45.0% 7 189 23.0% 8.5% 63.2% 27 547 24.0% 12.4% 48.3% 8 210 20.7% 10.0% 51.9% 28 569 36.4% 3.0% 91.8% 9 227 20.3% 7.7% 61.9% 29 588 46.3% 6.2% 86.7% 10 251 19.6% 4.7% 76.0% 30 732 24.4% 8.7% 64.5% 11 272 20.6% 0.5% 97.5% 31 762 19.6% 4.3% 78.1% 12 291 3.8% 6.1% −63.2% 32 791 55.2% 12.0% 78.3% 13 309 22.0% 8.3% 62.0% 33 821 134.5% 60.2% 55.2% 14 330 14.7% 12.1% 17.9% 34 848 147.3% 70.6% 52.1% 15 348 13.3% 8.0% 40.0% 35 907 165.3% 77.0% 53.4% 16 370 14.7% 4.6% 68.7% 36 935 145.3% 68.3% 53.0% 17 372 24.3% 3.1% 87.1% 37 965 102.1% 44.4% 56.5% 18 391 14.5% 4.7% 67.5% 38 993 122.0% 65.4% 46.4% 19 402 59.2% 31.8% 46.4% 39 1022 72.6% 37.4% 48.5% 20 407 18.9% 1.1% 94.2% 40 1051 52.4% 19.7% 62.5% 表 7 三个算例的燃烧模型CFD结果(时间消耗值、内存占用值及精度提升值)
Table 7. CFD results of three cases under two combustion models (time consumption value, memory occupancy value, and accuracy improvement value)
算例1 算例2 算例3 燃烧模型CFD结果 FPV FPV-ANN FPV FPV-ANN FPV FPV-ANN 耗时(s)/100步 61.1 211.1 71.1% 54.2 179.8 69.9% 43.7 138.5 68.4% 内存占用(GB) 16.7 21.1 20.9% 12.9 17.2 25.0% 10.4 14.8 29.8% 精度提高值 53.2% 55.7% 57.2% -
[1] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science, 1984, 10(3): 319-339 [2] 孙明波, 白雪松, 王振国, 湍流燃烧火焰面模式理论及应用, 北京: 科学出版社, 2014 (Sun Mingbo, Bai Xuesong, Wang Zhenguo. Theory and Application of Flamelet Model in Turbulent Combustion. Beijing: Science Press, 2014 (in Chinese)Sun Mingbo, Bai Xuesong, Wang Zhenguo. Theory and Application of Flamelet Model in Turbulent Combustion. Beijing: Science Press, 2014 (in Chinese) [3] 孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面模式研究综述, 力学进展, 2010 40(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Evaluation of Partially Premixed Flamelet Approach in Supersonic Combustion. Advances in Mechanics, 2010 40(6): 634-641 (in Chinese)Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Evaluation of Partially Premixed Flamelet Approach in Supersonic Combustion. Advances in Mechanics, 2010 40(6): 634-641 (in Chinese) [4] 汪洪波, 连城阅, 张锦成等. 回流区稳定燃烧的近熄火特性理论分析, 力学学报, 2023 55(9): 1-7 (Wang Hongbo, Lian Chengyue, Zhang Jincheng, et al. A theoretical study on near-blowoff characteristics of recirculation-zone stabilized combustion. Chinese Journal of Theoretical and Applied Mechanics, 2023 55 55(9): 1-7 (in Chinese)Wang Hongbo, Lian Chengyue, Zhang Jincheng, et al. A theoretical study on near-blowoff characteristics of recirculation-zone stabilized combustion. Chinese Journal of Theoretical and Applied Mechanics, 2023 55 55(9): 1-7 (in Chinese) [5] 时文, 田野, 郭明明等. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报, 2022, 54(3): 10 (Shi Wen, Tian Ye, Guo Mingming et al. Investigation of flow characteristics and flame stabilization in an ethylene-fueled scramjet combustor. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 10 (in Chinese) Shi Wen, Tian Ye, Guo Mingming et al . Investigation of flow characteristics and flame stabilization in an ethylene-fueled scramjet combustor. Chinese Journal of Theoretical and Applied Mechanics,2022 ,54 (3 ):10 (in Chinese)[6] Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling, Aerospace Science and Technology, 2000, 4(7): 463-480 [7] Saghafian A, Terrapon V E, Pitsch H. An efficient flamelet-based combustion model for compressible flows. Combustion and Flame, 2015, 162(3): 652-667 doi: 10.1016/j.combustflame.2014.08.007 [8] Tao T, Wang Z, Huang Y, et al. Flamelet-like models applied in scramjet combustors: A state of art and prospect. Chinese Journal of Aeronautics, 2023, 36(10): 24-43 doi: 10.1016/j.cja.2023.07.036 [9] Niu J, Piao Y. Numerical simulation of liquid kerosene combustion in a dual-mode scramjet combustor using flamelet/progress variable approach//46th AIAA Fluid Dynamics Conference. 2016: 3959 [10] Cao C, Ye T, Zhao M. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach. Chinese Journal of Aeronautics, 2015, 28(5): 1316-1327 doi: 10.1016/j.cja.2015.08.008 [11] Tang T, Yu J, Wang Z, et al. An improved flamelet/progress variable modeling in a hydrogen-fueled scramjet. International Journal of Hydrogen Energy, 2023 [12] Shan F, Hou L, Chen Z, et al. Linearized correction to a flamelet-based model for hydrogen-fueled supersonic combustion. International Journal of Hydrogen Energy, 2017, 42(16): 11937-11944 doi: 10.1016/j.ijhydene.2017.02.100 [13] Shan F, Zhang D, Hou L, et al. An improved flamelet/progress variable modeling for supersonic combustion. International Journal of Hydrogen Energy, 2021, 46(5): 4485-4495 doi: 10.1016/j.ijhydene.2020.10.225 [14] Wang H, Shan F, Piao Y et al. IDDES simulation of hydrogen-fueled supersonic combustion using flamelet modeling. International Journal of Hydrogen Energy, 2015, 40(1): 683-691 doi: 10.1016/j.ijhydene.2014.10.124 [15] 范周琴, 超声速湍流燃烧火焰面模型判别, 建模及应用研究. [博士论文]. 长沙: 国防科学技术大学, 2011 (Fan Zhouqin. Investigation of Validation, Modeling and Application of Flamelet model in Supersonic Turbulent Combustion. [PhD Thesis]. Changsha: National University of Defense Technology, 2011 (in Chinese)Fan Zhouqin. Investigation of Validation, Modeling and Application of Flamelet model in Supersonic Turbulent Combustion. [PhD Thesis]. Changsha: National University of Defense Technology, 2011 (in Chinese) [16] 赵国焱, 超声速湍流扩散燃烧火焰面模型修正及应用研究. [硕士论文]. 长沙: 国防科学技术大学, 2015 (Zhao Guoyan. Modification and Application of Turbulent Diffusion Flamelet Model in Supersonic Combustion Flow. [Master Thesis]. Changsha: National University of Defense Technology, 2015 (in Chinese)Zhao Guoyan. Modification and Application of Turbulent Diffusion Flamelet Model in Supersonic Combustion Flow. [Master Thesis]. Changsha: National University of Defense Technology, 2015 (in Chinese) [17] 杨越, 游加平, 孙明波等. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型, 航空学报, 2015, 36(1): 261-273 (Yang Yue, You Jiaping, Sun Mingbo, et al. Modeling of turbulence chemistry interactions in numerical simulations of supersonic combustion. Acta Aeronautica et Asironautica Sinica, 2015, 36(1): 261-273 (in Chinese)Yang Yue, You Jiaping, Sun Mingbo, et al. Modeling of turbulence chemistry interactions in numerical simulations of supersonic combustion. Acta Aeronautica et Asironautica Sinica, 2015, 36(1): 261-273 (in Chinese) [18] 张锦成, 王振国, 孙明波等. 高马赫数下超声速燃烧的自点火查表方法, 力学学报, 54 (2022) 1548 (Zhang Jincheng, Wang Zhenguo, Sun Mingbo, et al. Auto-ignition tabulated method for supersonic combustion at high Mach number. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1548-1556 (in Chinese)2022) 1548 (Zhang Jincheng, Wang Zhenguo, Sun Mingbo, et al. Auto-ignition tabulated method for supersonic combustion at high Mach number. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1548-1556 (in Chinese) [19] Rao C, Sun H, Liu Y. Physics-informed deep learning for incompressible laminar flows. Theoretical and Applied Mechanics Letters, 2020, 10(3): 207-212 doi: 10.1016/j.taml.2020.01.039 [20] Meng Q, Jiang Z, Wang J. Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow. Theoretical and Applied Mechanics Letters, 2023, 13(1): 100399 doi: 10.1016/j.taml.2022.100399 [21] 陈皓, 郭明明, 田野等. 卷积神经网络在流场重构研究中的进展, 力学学报, 54 (2022) 2343 (Chen Hao, Guo Mingming, Tian Ye, et al. Progress of convolution neural networks in flow field reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese)2022) 2343 (Chen Hao, Guo Mingming, Tian Ye, et al. Progress of convolution neural networks in flow field reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese) [22] 陈尔达, 宋昊宇, 郭明明等. 基于“分段−组合”残差神经网络的超声速氢气零维点火计算方法[J/OL]. 推进技术: 1-15 [2023-08-23] https://doi.org/10.13675/j.cnki.tjjs.2208105. (in Chinese) (Chen Erda, Song Haoyu, Guo Mingming, et al. Calculation Method of Supersonic Hydrogen Zero-Dimensional Ignition based on Segmentation-Combination Residual Neural Network [J/OL]. Journal of Propulsion Technology: 1-15 [2023-08-23] https://doi.org/10.13675/j.cnki.tjjs.2208105. (in Chinese)Chen Erda, Song Haoyu, Guo Mingming, et al. Calculation Method of Supersonic Hydrogen Zero-Dimensional Ignition based on Segmentation-Combination Residual Neural Network [J/OL]. Journal of Propulsion Technology: 1-15 [2023-08-23] https://doi.org/10.13675/j.cnki.tjjs.2208105. (in Chinese) [23] Mingming Guo, Hao Chen, Ye Tian, Yi Zhang, etc. Flame reconstruction of hydrogen fueled-scramjet combustor based on multi-source information fusion[J]. International Journal of Hydrogen Energy, 2023. DOI: 10.1016/j.ijhydene.2023.04.311 [24] https://baike.baidu.com/item/盘古大模型/62824081 [25] Flemming F, Sadiki A, Janicka J. LES using artificial neural networks for chemistry representation. Progress in Computational Fluid Dynamics, An International Journal, 2005, 5(7): 375-385 doi: 10.1504/PCFD.2005.007424 [26] Kempf A, Flemming F, Janicka J. Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proceedings of the Combustion Institute, 2005, 30(1): 557-565 doi: 10.1016/j.proci.2004.08.182 [27] Ihme M, Schmitt C, Pitsch H. Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame. Proceedings of the Combustion Institute, 2009, 32(1): 1527-1535 doi: 10.1016/j.proci.2008.06.100 [28] Ihme M, Marsden A L, Pitsch H. Generation of optimal artificial neural networks using a pattern search algorithm: Application to approximation of chemical systems. Neural Computation, 2008, 20(2): 573-601 doi: 10.1162/neco.2007.08-06-316 [29] Owoyele O, Kundu P, Ameen MM, et al. Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames. International Journal of Engine Research, 2020, 21(1): 151-168 doi: 10.1177/1468087419837770 [30] Zhang Y, Xu S, Zhong S, et al. Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks. Energy and AI, 2020, 2: 100021 doi: 10.1016/j.egyai.2020.100021 [31] 高正伟, 金台, 宋昌成等. 基于人工神经网络的超临界小火焰模型研究, 浙江大学学报(工学版), 2021, 55(10): 1968-1977 (Gao Zhengwei, Jin Tai, Song Changcheng, et al. Application of artificial neural networks to supercritical flamelet model. Journal of Zhejiang University(Engineering Science), 2021, 55(10): 1968-1977 (in Chinese)Gao Zhengwei, Jin Tai, Song Changcheng, et al. Application of artificial neural networks to supercritical flamelet model. Journal of Zhejiang University(Engineering Science), 2021, 55(10): 1968-1977 (in Chinese) [32] Demir S, Kundu P, Owoyele O. Implementation of high dimensional flamelet manifolds for supersonic combustion using deep neural networks//AIAA AVIATION 2020 FORUM. 2020: 3059 [33] Bhalla S, Yao M, Hickey JP, et al. Compact representation of a multi-dimensional combustion manifold using deep neural networks//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer International Publishing, 2019: 602-617 [34] Zhang J, Huang H, Xia Z, et al. Artificial neural networks for chemistry representation in numerical simulation of the flamelet-based models for turbulent combustion. IEEE Access, 2020, 8: 80020-80029 doi: 10.1109/ACCESS.2020.2990943 [35] Rumelhart DE, McClelland JL. Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations. MIT press, 1986 [36] Liu Y, He X, Xue R, et al. Numerical simulation of the interaction between shock train and combustion in three-dimensional M12-02 scramjet model. International Journal of Hydrogen Energy, 2022, 47(12): 8026-8036 doi: 10.1016/j.ijhydene.2021.12.126 [37] 何粲, 邢建文, 欧阳浩等. 飞行 Ma12 条件超燃发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632 (He Can, Xing Jianwen, Ouyang hao et al. Flow Field and Combustion Characteristics Analysis of Scramjet Under Ma12 Flight Condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632 (in Chinese) He Can, Xing Jianwen, Ouyang hao et al . Flow Field and Combustion Characteristics Analysis of Scramjet Under Ma12 Flight Condition. Chinese Journal of Theoretical and Applied Mechanics,2022 ,54 (3 ):622 -632 (in Chinese)[38] Liu Q, Baccarella D, Landsberg W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows. Proceedings of the combustion institute, 2019, 37(3): 3733-3740 doi: 10.1016/j.proci.2018.08.037 [39] 钟富宇, 乐嘉陵, 田野等. 乙烯燃料超燃冲压发动机燃烧过程研究. 实验流体力学, 2021, 35(1): 34-43 (Zhong Fuyu, Le Jialing, Tian Ye, et al. Investigation of the combustion processin an ethylene-fueled scramjet combustor. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43 (in Chinese) doi: 10.11729/syltlx20200093 Zhong Fuyu, Le Jialing, Tian Ye, et al . Investigation of the combustion processin an ethylene-fueled scramjet combustor. Journal of Experiments in Fluid Mechanics,2021 ,35 (1 ):34 -43 (in Chinese) doi: 10.11729/syltlx20200093 -