EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

折纸超材料折展稳态特性研究

王海瑞 申薛靖 王宙恒 贾璐 李传檑 朱龙基 赵丹阳

王海瑞, 申薛靖, 王宙恒, 贾璐, 李传檑, 朱龙基, 赵丹阳. 折纸超材料折展稳态特性研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-356
引用本文: 王海瑞, 申薛靖, 王宙恒, 贾璐, 李传檑, 朱龙基, 赵丹阳. 折纸超材料折展稳态特性研究. 力学学报, 待出版 doi: 10.6052/0459-1879-22-356
Wang Hairui, Shen Xuejing, Wang Zhouheng, Jia Lu, Li Chuanlei, Zhu Longji, Zhao Danyang. Study on folding stability of origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-356
Citation: Wang Hairui, Shen Xuejing, Wang Zhouheng, Jia Lu, Li Chuanlei, Zhu Longji, Zhao Danyang. Study on folding stability of origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-356

折纸超材料折展稳态特性研究

doi: 10.6052/0459-1879-22-356
基金项目: 国家自然科学基金(12102223)和西安交通大学机械结构强度与振动国家重点实验室开放课题(SV2021-KF-09)项目资助
详细信息
    作者简介:

    王海瑞, 助理研究员, 主要研究方向: 可展结构/超材料的设计与规模化制造. E-mail:whrlixue@126.com

STUDY ON FOLDING STABILITY OF ORIGAMI METAMATERIALS

Funds: The project was supported by the (12345678) and (9876543)
  • 摘要: 可折展折纸超材料可通过自身内部微结构连续变形来调控宏观变形, 使其泊松比、刚度、模量等力学性能发生转变. 本研究针对新型折纸超材料稳态机理不清晰的问题, 采用扭转弹簧等效法和能量原理, 对折纸超材料在复杂内部构型及折展运动协同作用下的力学行为进行了理论研究, 建立了超材料构型在折展变形过程中的力学模型, 分析了构型几何参数对折展外载荷的影响规律. 通过参数分析发现, 该折纸超材料的外载荷在展开过程中呈现出单调性, 不具有稳态特性. 外载荷在折叠过程中可呈现出单调性、单稳态和双稳态等多种情况, 不同稳态之间的调控与边长比pq、内角α、折展角$ \theta $和间距尺寸比r等构型参数密切相关, 从而揭示了折纸超材料稳态特性的转变机理. 本研究对于提高折纸超材料的构型设计及其性能调控具有重要的理论指导意义.

     

  • 图  1  折纸超材料单胞的折痕图及三维构型

    Figure  1.  Crease pattern and 3D configuration of origami metamaterials

    图  2  折纸超材料在折展过程中外载荷$\dfrac{{{F_z}}}{k}$与边长比q之间的关系

    Figure  2.  Relationships between external load $\dfrac{{{F_z}}}{k}$ and edge ratio q during the folding of origami metamaterials

    3  折纸超材料在折展过程中外载荷$\dfrac{{{F_z}}}{k}$与折展角$ \alpha $之间的关系

    3.  Relationships between external load $\dfrac{{{F_z}}}{k}$ and inner angle $ \alpha $ during the folding of origami metamaterials

    3  折纸超材料在折展过程中外载荷$\dfrac{{{F_z}}}{k} $与折展角$\alpha $之间的关系(续)

    3.  Relationships between external load $\dfrac{{{F_z}}}{k} $ and inner angle $ \alpha $ during the folding of origami metamaterials (continued)

    图  4  折纸超材料在折展过程中外载荷$\dfrac{{{F_z}}}{k}$与间距尺寸比r之间的关系

    Figure  4.  Relationships between external load $\dfrac{{{F_z}}}{k}$ and spacing ratio r during the folding of origami metamaterials

    图  5  三种折纸超材料在折展过程中外载荷的变化

    Figure  5.  Variation of external loads during folding of origami metamaterials

  • [1] Surjadi JU, Gao L, Du H, et al. Mechanical metamaterials and their engineering applications. Advanced Engineering Materials, 2019, 21(3): 1800864 doi: 10.1002/adem.201800864
    [2] Wu L, Wang Y, Chuang K, et al. A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Materials Today, 2021, 44: 168-193 doi: 10.1016/j.mattod.2020.10.006
    [3] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019, 51(3), 656-687 doi: 10.6052/0459-1879-18-381

    Ren X, Zhang X, Xie Y. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3), 656-687 (in Chinese) doi: 10.6052/0459-1879-18-381
    [4] 常若菲, 张一慧, 宋吉舟. 可延展结构的设计及力学研究新进展. 固体力学学报. 2016, 37(2): 95-106

    Chang R, Zhang Y, Song J. Recent advances in mechanics of stretchable designs. Chinese Journal of Solid Mechancis, 2016, 37(2): 95-106 (in Chinese)
    [5] Kuribayashi K, Tsuchiya K, You Z, et al. Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Materials Science and Engineering:A, 2006, 419(2016): 131-137
    [6] Wang Y, Zang D, Ge S, et al. A novel microfluidic origami photoelectrochemical sensor based on CdTe quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate. Electrochimica Acta, 2013, 107: 147-154 doi: 10.1016/j.electacta.2013.05.154
    [7] Rus D, Tolley M T. Design, fabrication and control of origami robots. Nature Reviews Materials, 2018, 3(6): 101-112 doi: 10.1038/s41578-018-0009-8
    [8] Onal C D, Wood R J, Rus D. An Origami-Inspired Approach to Worm Robots. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 430-438 doi: 10.1109/TMECH.2012.2210239
    [9] 邓云飞, 曾宪智, 周翔等. 复合材料褶皱夹芯结构研究进展. 复合材料学报. 2020, 37(12): 2966-2983

    Deng Y, Zeng X, Zhou X. Research progress for the composite sandwich structure with foldcore. Acta Materiae Compositae Sinica, 2020, 37(12): 2966-2983 (in Chinese)
    [10] Gattas J M, You Z. Quasi-static impact of indented foldcores. International Journal of Impact Engineering, 2014, 73: 15-29 doi: 10.1016/j.ijimpeng.2014.06.001
    [11] 李笑, 李明. 折纸及其折痕设计研究综述. 力学学报. 2018, 50(3): 467-476

    Li X, Li M. A review of origami and its crease design. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476 (in Chinese)
    [12] Wang H, Zhao D, Jin Y, et al. Unified parametric modeling of origami-based tube. Thin-Walled Structures, 2018, 133: 226-234 doi: 10.1016/j.tws.2018.09.043
    [13] Wang Z, Jing L, Yao K, et al. Origami-based reconfigurable metamaterials for tunable chirality. Advanced Materials, 2017, 29(27): 1700412 doi: 10.1002/adma.201700412
    [14] 陈焱. 基于机构运动的大变形超材料. 机械工程学报, 2020, 56(19): 2-13 doi: 10.3901/JME.2020.19.002

    Chen Y. Review on Kinematic Metamaterials. Journal of Mechanical Engineering, 2020, 56(19): 2-13 (in Chinese) doi: 10.3901/JME.2020.19.002
    [15] Schenk M, Guest S D. Geometry of Miura-folded metamaterials. Proceedings of the National Academy of Sciences, 2013, 110(9): 3276-3281 doi: 10.1073/pnas.1217998110
    [16] 方虹斌, 吴海平, 刘作林等. 折纸结构和折纸超材料动力学研究进展. 力学学报. 2022, 54(1): 1-38

    Fang H, Wu H, Liu Z, Zhang Q, Xu J. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese)
    [17] Lin Z, Novelino L S, Wei H, et al. Mechanical metamaterials: folding at the microscale: enabling multifunctional 3 d origami‐architected metamaterials. Small, 2020, 16(35): 2070192 doi: 10.1002/smll.202070192
    [18] Yasuda H, Yang J. Rarefaction wave propagation in origami-based mechanical metamaterials. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015, 57137: V05BT08A058
    [19] Yasuda H, Yang J. Reentrant Origami-based metamaterials with negative Poisson's ratio and bistability. Physical Review Letters, 2015, 18(115): 185502
    [20] Hanna BH, Magleby SP, Lang RJ, et al. Force-deflection modeling for generalized origami waterbomb-base mechanisms. ASME Journal of Applied Mechanics, 2015, 82(8): 081001 doi: 10.1115/1.4030659
    [21] Hanna BH, Lund JM, Lang RJ, et al. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Materials & Structures, 2014, 23(9): 94009
    [22] Silverberg J L, Na J, Evans A A, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nature Materials, 2015, 14(4): 389-393 doi: 10.1038/nmat4232
    [23] Silverberg J L, Evans A A, Mcleod L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science, 2014, 345(6197): 647 doi: 10.1126/science.1252876
    [24] Cai J, Zhang Y, Xu Y, et al. The foldability of cylindrical foldable structures based on rigid origami. ASME Journal of Mechanical Design, 2016, 138(3): 31401 doi: 10.1115/1.4032194
    [25] Cai J, Deng X, Zhou Y, et al. Bistable behavior of the cylindrical origami structure with Kresling pattern. ASME Journal of Mechanical Design, 2015, 137(6): 61406 doi: 10.1115/1.4030158
    [26] Fang H, Chu S A, Xia Y, et al. Programmable self-locking origami mechanical metamaterials. Advanced Materials, 2018, 30(15): 1706311 doi: 10.1002/adma.201706311
    [27] Fang H, Yu X, Cheng L. Reconfigurable origami silencers for tunable and programmable sound attenuation. Smart Materials and Structures, 2018, 27(9): 95007 doi: 10.1088/1361-665X/aad0b6
    [28] Liu Z, Fang H, Xu J, et al. A novel origami mechanical metamaterial based on Miura-variant designs: exceptional multistability and shape reconfigurability. Smart Material Structures, 2021, 30(8): 085029 doi: 10.1088/1361-665X/ac0d0f
    [29] 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性. 力学学报. 2019, 51(4): 1110-1121

    Qiu H, Fang H, Xu J. Nonlinear dynamical characteristics of a multi-stable series origami structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121 (in Chinese))
    [30] Song J, Ma J, Chen Y. An origami-inspired mechanical metamaterial with graded stiffness. APS March Meeting, 2018, F57: 006
    [31] Wang H, Zhao D, Jin Y, et al. Modulation of multi-directional auxeticity in hybrid origami metamaterials. Applied Materials Today, 2020, 20: 100715 doi: 10.1016/j.apmt.2020.100715
  • 加载中
图(6)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回