EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鼓泡流化床中流动特性的多尺度数值模拟

王帅 于文浩 陈巨辉 张天浴 孙立岩 陆慧林

王帅, 于文浩, 陈巨辉, 张天浴, 孙立岩, 陆慧林. 鼓泡流化床中流动特性的多尺度数值模拟[J]. 力学学报, 2016, 48(3): 585-592. doi: 10.6052/0459-1879-15-089
引用本文: 王帅, 于文浩, 陈巨辉, 张天浴, 孙立岩, 陆慧林. 鼓泡流化床中流动特性的多尺度数值模拟[J]. 力学学报, 2016, 48(3): 585-592. doi: 10.6052/0459-1879-15-089
Wang Shuai, Yu Wenhao, Chen Juhui, Zhang Tianyu, Sun Liyan, Lu Huilin. MULTI-SCALE SIMULATION ON HYDRODYNAMIC CHARACTERISTICS IN BUBBLING FLUIDIZED BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 585-592. doi: 10.6052/0459-1879-15-089
Citation: Wang Shuai, Yu Wenhao, Chen Juhui, Zhang Tianyu, Sun Liyan, Lu Huilin. MULTI-SCALE SIMULATION ON HYDRODYNAMIC CHARACTERISTICS IN BUBBLING FLUIDIZED BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 585-592. doi: 10.6052/0459-1879-15-089

鼓泡流化床中流动特性的多尺度数值模拟

doi: 10.6052/0459-1879-15-089
基金项目: 国家自然科学基金(51390494,51406045),中国博士后基金(2015M581443)和黑龙江省博士后基金(LBH-Z15055)资助项目.
详细信息
    通讯作者:

    王帅,E-mail:shuaiwang@hit.edu.cn

  • 中图分类号: TK224

MULTI-SCALE SIMULATION ON HYDRODYNAMIC CHARACTERISTICS IN BUBBLING FLUIDIZED BED

  • 摘要: 鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.

     

  • 1 Cloete S, Zaabout A, Johansen ST, et al. The generality of the standard 2D TFM approach in predicting bubbling fluidized bed hydrodynamics. Powder Technology, 2013, 235: 735-746  
    2 Herzog N, Schreiber M, Egbers C, et al. A comparative study of different CFD codes for numerical simulation of gas-solid fluidized bed hydrodynamics. Computers & Chemical Engineering. 2012,39: 41-46
    3 Zhao Y, Lu B, Zhong Y. Influence of collisional parameters for rough particles on simulation of a gas-fluidized bed using a twofluid model. International Journal of Multiphase Flow , 2015, 71:1-13  
    4 王帅,郝振华,徐鹏飞等. 粗糙颗粒动理学及稠密气固两相流动的数值模拟. 力学学报, 2012, 44(2): 278-286 (Wang Shuai, Hao Zhenhua, Xu Pengfei, et al. Kinetic theory of rough spheres and numerical simulation of dense gas-particles flow. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 278-286 (in Chinese))
    5 Schneiderbauer S, Pirker S. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds. AIChE Journal, 2014, 60(3): 839-854  
    6 Igci Y, Sundaresan S. Constitutive models for filtered two-fluid models of fluidized gas-particle flows. Industrial & Engineering Chemistry Research, 2011, 50: 13190-13201  
    7 Igci Y, Andrews AT, Sundaresan S, et al. Filtered two-fluid models for fluidized gas-particle suspensions. AIChE Journal , 2008, 54:1431-1448  
    8 Li JH, Cheng CL, Zhang ZD, et al. The EMMS model-its application, development and updated concepts. Chemical Engineering Science, 1999, 54: 5409-5425  
    9 Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient. Chemical Engineering Journal, 2003, 96: 71-80  
    10 Wang W, Li J. Simulation of gas-solid two-phase flow by a multiscale CFD approach-extension of the EMMS model to the sub-grid level. Chemical Engineering Science, 2007, 62: 208-231  
    11 Wang J, Liu Y. EMMS-based Eulerian simulation on the hydrodynamics of a bubbling fluidized bed with FCC particles. Powder Technology,2010, 197: 241-246  
    12 Shi Z, Wang W, Li J. A bubble-based EMMS model for gas-solid bubbling fluidization. Chemical Engineering Science, 2011, 66:5541-5555  
    13 Lungu M, Zhou Y, Wang J, et al. A CFD study of a bi-disperse gassolid fluidized bed: Effect of the EMMS sub grid drag correction. Powder Technology, 2015, 280: 154-172  
    14 Wang Y, Zou Z, Li H, et al. A new drag model for TFM simulation of gas-solid bubbling fluidized beds with Geldart-B particles. Particuology, 2013, 8: 176-185
    15 Wang J, van der Hoef MA, Kuipers JAM. Coarse grid simulation of bed expansion characteristics of industrial-scale gas-solid bubbling fluidized beds. Chemical Engineering Science, 2010, 65: 2125-2131  
    16 Lü X, Li H, Zhu Q. Simulation of gas-solid flow in 2D/3D bubbling fluidized beds by combining the two-fluid model with structurebased drag model. Chemical Engineering Journal, 2014, 236: 149-157  
    17 Yang S, Li HZ, Zhu QS. Experimental study and numerical simulation of ba ed bubbling fluidized beds with Geldart A particles in three dimensions. Chemical Engineering Journal, 2015, 259: 338-347  
    18 Richardson JF, Zaki WN. Sedimentation and fluidization. Transactions of the Institution of Chemical Engineers, 1954, 32: 35-53
    19 Mori S,Wen CY. Estimation of bubble diameter in gaseous fluidized beds. AIChE Journal, 1975, 21: 109-115  
    20 Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. Boston, MA: Academic Press Inc., 1994
    21 Darton RC, Harrison D. The rise of single gas bubbles in liquid fluidized bed. Transactions of the Institution of Chemical Engineers,1974, 52: 301-304
    22 Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal , 1979, 25: 843-855  
    23 Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling. Applied Mechanics Reviews, 1986, 39: 1-23  
    24 Zhang DZ, Van der Heyden WB. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows. International Journal of Multiphase Flow, 2002, 28: 805-822  
    25 Zuber N. On the dispersed two-phase flow in the laminar flow regime. Chemical Engineering Science, 1964, 19: 897-917  
    26 Thomas DG. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid and Interface Science, 1965, 20: 267-277  
    27 Zhu H, Zhu J, Li G, et al. Detailed measurements of flow structure inside a dense gas-solid fluidized bed. Powder Technology, 2008,180: 339-349  
    28 Wang J, van der Hoef MA, Kuipers JAM. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer. Chemical Engineering Science , 2009, 64: 622-625  
    29 Laverman JA, Roghair I, Annaland MV, et al. Investigation into the hydrodynamics of gas-solid fluidized beds using particle image velocimetry coupled with digital image analysis. Canadian Journal of Chemical Engineering, 2008, 86: 523-535  
    30 Schneiderbauer S, Puttinger S, Pirker S. Comparative analysis of sub-grid drag modications for dense gas-particle flows in bubbling fluidized beds. AIChE Journal, 2013, 59: 4077-4099  
  • 加载中
计量
  • 文章访问数:  857
  • HTML全文浏览量:  64
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-18
  • 修回日期:  2016-03-24
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回