EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型

江守燕 杜成斌

江守燕, 杜成斌. 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型[J]. 力学学报, 2015, 47(6): 1037-1045. doi: 10.6052/0459-1879-15-134
引用本文: 江守燕, 杜成斌. 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型[J]. 力学学报, 2015, 47(6): 1037-1045. doi: 10.6052/0459-1879-15-134
Jiang Shouyan, Du Chengbin. NUMERICAL MODEL FOR IDENTIFICATION OF INTERNAL DEFECT OR INCLUSION BASED ON EXTENDED FINITE ELEMEMT METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1037-1045. doi: 10.6052/0459-1879-15-134
Citation: Jiang Shouyan, Du Chengbin. NUMERICAL MODEL FOR IDENTIFICATION OF INTERNAL DEFECT OR INCLUSION BASED ON EXTENDED FINITE ELEMEMT METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1037-1045. doi: 10.6052/0459-1879-15-134

基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型

doi: 10.6052/0459-1879-15-134
基金项目: 国家自然科学基金(51309088,51579084,11372098)、中国博士后科学基金(2014T70466)和中央高校基本科研业务费专项资金(2015B01714)资助项目.
详细信息
    作者简介:

    江守燕,副教授,主要研究方向:不连续问题的静、动扩展有限元法.E-mail:syjiang@hhu.edu.cn

  • 中图分类号: TB115

NUMERICAL MODEL FOR IDENTIFICATION OF INTERNAL DEFECT OR INCLUSION BASED ON EXTENDED FINITE ELEMEMT METHODS

Funds: The project was supported by the National Natural Science Foundation of China (51309088, 51579084, 11372098), China Postdoctoral Science Foundation (2014T70466), and the Fundamental Research Funds for the Central Universities (2015B01714).
  • 摘要: 传统的结构检测方法一般需要钻孔取样,对结构本身有一定的破坏作用,而无损检测方法在检测过程中不破坏结构本身,这项技术的重要性日益显著. 结合扩展有限元法和人工蜂群智能优化算法的优点,建立了结构内部缺陷(夹杂)的反演分析模型,为结构的无损检测技术提供了一条新的途径.扩展有限元法通过引入非连续位移模式可以在不重新划分网格的情况下通过改变水平集函数反映缺陷(夹杂)的位置及大小,避免了反演分析每次迭代过程中的网格重剖分,人工蜂群智能优化算法在每次迭代中都采用全局和局部搜索,找到最优解的概率大大增加并可很好地避免局部最优,因此,扩展有限元法与人工蜂群智能优化算法的结合有效地减少了反演分析的计算工作量. 通过若干算例的分析表明:建立的反演分析模型能准确地探测结构内部存在的单个缺陷(夹杂).

     

  • Melenk JM, Babušuska I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 289-314  
    Babušuska I, Melenk JM. The partition of unity method. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758  3.0.CO;2-N">
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620  3.0.CO;2-S">
    Jiang SY, Du CB, Gu CS, et al. XFEM analysis of the effects of voids, inclusions, and other cracks on the dynamic stress intensity factor of a major crack. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37: 866-882  
    Jiang SY, Du CB, Gu CS. An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM. Structural Engineering and Mechanics, 2014, 49(5): 597-618  
    Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12-49  
    Rabinovich D, Givoli D, Vigdergauz S. XFEM-based crack detection scheme using a genetic algorithm. International Journal for Numerical Methods in Engineering, 2007, 71(9): 1051-1080  
    Rabinovich D, Givoli D, Vigdergauz S. Crack identification by ‘arrival time’ using XFEM and a genetic algorithm. International Journal for Numerical Methods in Engineering, 2009, 77(3): 337-359  
    Waisman H, Chatzi E, Smyth AW. Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 2010, 82(3): 303-328
    Chatzi EN, Hiriyur B, Waisman H, et al. Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures. Computers and Structures, 2011, 89(7-8): 556-570
    Jung J, Jeong C, Taciroglu E. Identification of a scatterer embedded in elastic heterogeneous media using dynamic XFEM. Computer Methods in Applied Mechanics & Engineering, 2013, 259: 50-63  
    Sun H, Waisman H, Betti R. Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm. International Journal for Numerical Methods in Engineering, 2013, 95: 871-900  
    Sun H, Waisman H, Betti R. A multiscale flaw detection algorithm based on XFEM. International Journal for Numerical Methods in Engineering, 2014, 100: 477-503  
    Nanthakumar SS, Lahmer T, Rabczuk T. Detection of flaws in piezoelectric structures using extended FEM. International Journal for Numerical Methods in Engineering, 2013, 96: 373-389  
    江守燕, 杜成斌. 一种XFEM断裂分析的裂尖单元新型改进函数. 力学学报, 2013, 45(1): 134-138 (Jiang Shouyan, Du Chengbin. A novel enriched function of elements containing crack tip for fracture analysis in XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 134-138 (in Chinese))
    江守燕, 杜成斌, 顾冲时等. 求解双材料界面裂纹应力强度因子的扩展有限元法. 工程力学, 2015, 32(3): 22-27 (Jiang Shouyan, Du Chengbin, Gu Chongshi, et al. Computation of stress intensity factors for interface cracks between two dissimilar materials using extended finite element methods. Engineering Mechanics, 2015, 32(3): 22-27 (in Chinese))
    王志勇, 马力, 吴林志等. 基于扩展有限元法的颗粒增强复合材料静态及动态断裂行为研究. 固体力学学报, 2011, 32(6): 566-573 (Wang Zhiyong, Ma Li, Wu Linzhi, et al. Investigation of static and dynamic fracture behavior of particle-reinforced composite materials by the extended finite element method . Chinese Journal of Solid Mechanics, 2011, 32(6): 566-573 (in Chinese))
    余天堂. 含裂纹体的数值模拟. 岩石力学与工程学报, 2005, 24(24): 4434-4438 (Yu Tiantang. Numerical simulation of a body with cracks. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4434-4438 (in Chinese))
    Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131-150  3.0.CO;2-J">
    Moës N, Cloirec M, Cartraud P, et al. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics & Engineering, 2003, 192(28-30): 3163-3177
    Hiriyur B, Waisman H, Deodatis G. Uncertainty quantification in homogenization of heterogeneous micro-structures modeled by XFEM. International Journal for Numerical Methods in Engineering, 2011, 88(3): 257-278  
    Stolarska M, Chopp DL, Moës N, et al. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001, 51: 943-960  
    周新宇, 吴志健, 邓长寿 等. 一种邻域搜索的人工蜂群算法. 中南大学学报(自然科学版), 2015, 46(2): 534-546 (Zhou Xinyu, Wu Zhijian, Deng Changshou, et al. Neighborhood search-based artificial bee colony algorithm. Journal of Central South University (Science and Technology), 2015, 46(2): 534-546 (in Chinese))
    江守燕, 杜成斌. 弱不连续问题扩展有限元法的数值精度研究. 力学学报, 2012, 44(6): 1005-1015 (Jiang Shouyan, Du Chengbin. Study on numerical precision of extended finite element methods for modeling weak discontinuties. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1005-1015 (in Chinese))
  • 加载中
计量
  • 文章访问数:  856
  • HTML全文浏览量:  57
  • PDF下载量:  1017
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-15
  • 修回日期:  2015-08-17
  • 刊出日期:  2015-11-18

目录

    /

    返回文章
    返回