EI、Scopus 收录
中文核心期刊
曾扬兵, 沈孟育, 王保国, 刘秋生. N-S方程在非结构网格下的求解[J]. 力学学报, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383
引用本文: 曾扬兵, 沈孟育, 王保国, 刘秋生. N-S方程在非结构网格下的求解[J]. 力学学报, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383
SOLUTION OF N S EQUATIONS ON UNSTRUCTURED GRID[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383
Citation: SOLUTION OF N S EQUATIONS ON UNSTRUCTURED GRID[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383

N-S方程在非结构网格下的求解

SOLUTION OF N S EQUATIONS ON UNSTRUCTURED GRID

  • 摘要: 在Roe的矢通量差分分裂的基础上,吸收了NND格式的优点,提出了一种非结构网格下求解Euler方程和N-S方程的高分辨率高精度迎风格式.这种格式具有捕捉强激波和滑移线的良好性能.在时间方向上采用了显式和隐式两种解法.文中还给出了自适应技术.最后,成功地完成了GAMM超音速前台阶绕流、二维平板无粘激波反射、三维Hobson叶栅流动、VKI叶栅流动、C3X叶栅流动的数值模拟,得到了满意的结果

     

    Abstract: A new upwind scheme is presented for solving the N S equations on unstructured grid. Spatial discretion is based on flux splitting of Roe. It can capture the strong shock and discontinuity. Solutions are advanced in time by Runge Kutta time stepping scheme and implicit Gauss Seidel relaxation procedure. The adaptive techniques is given. The numerical experiments for flow in tunnel with step, reflection of shock on a flat and flow in cascades demonstrate the flexibility of the present method.

     

/

返回文章
返回