EI、Scopus 收录
中文核心期刊

纤维增强陶瓷基复合材料热结构可重复使用分析、设计和评价中的关键力学问题

KEY MECHANICS ISSUES IN THE ANALYSIS, DESIGN, AND EVALUATION OF REUSABLE THERMAL STRUCTURES OF FIBER-REINFORCED CERAMIC MATRIX COMPOSITES

  • 摘要: 新一代空天往返飞行器在全寿命周期内经历多次飞行-再入过程, 在此过程中经受严苛的气动热/力/振动等多物理耦合载荷作用, 在此类极端瞬态热力耦合载荷作用下纤维增强陶瓷基复合材料(Ceramic Matrix Composites, CMC)热结构的力学行为及损伤失效机制亟需明晰. 本文从多物理场耦合视角揭示了CMC热结构在循环服役环境中的损伤演化机理, 辨识出瞬态热机械载荷是材料结构在重复使用条件下性能退化的主控因素之一, 构建了一套完整的高温瞬态大温度温度梯度下热机械诱导裂纹的预测与分析框架. 通过建立热传导-力学响应耦合模型, 实现了材料内部温度场、应力场及裂纹能量释放率(ERR)时空演化的定量表征. 研究表明, 瞬态热载荷导致的非均匀温度梯度是诱发亚表层应力状态反转(拉压转换)的核心诱因, 其与材料微结构相互作用使得最大ERR出现于迎风面侧的亚表面区域, 且弯曲约束条件可使ERR峰值提升至无约束工况的2倍. 基于参数化分析, 提出了以低ERR为指标的可重复设计准则, 明确了梯度模量化、高导热、低热膨胀和薄壁化为CMC热结构的优化方向. 通过自主搭建的1500 °C/1.5kN级力热联合试验平台, 验证了C/SiC机翼前缘热结构在10次以上的循环加载后仍保持结构完整性, 无损检测未发现界面脱粘或基体裂纹. 本研究为可重复使用CMC热结构的材料/结构协同优化设计和损伤容限设计提供了理论-实验协同的创新方法论, 对突破高超声速飞行器热防护系统设计瓶颈具有重要工程意义.

     

    Abstract: The next-generation reusable space vehicles undergo multiple flight-reentry cycles throughout their entire service life, during which they are subjected to extreme aerodynamic, thermal, mechanical, and vibrational loads. These loads involve complex multi-physics interactions, including severe transient thermo-mechanical coupling. The mechanical behavior and damage failure mechanisms of fiber-reinforced ceramic matrix composites (CMC) under such extreme conditions need to be clearly understood. This study investigates the damage evolution mechanisms of CMC thermal structures in cyclic service environments from the perspective of multi-physics coupling. It identifies transient thermo-mechanical loads as one of the primary factors influencing performance degradation under repeated use conditions. A comprehensive predictive and analytical framework for thermomechanical-induced cracking under high-temperature transient large thermal gradients is proposed. By developing a coupled thermal conduction-mechanical response model, we achieve quantitative characterization of the spatiotemporal evolution of the internal temperature field, stress field, and crack energy release rate (ERR) in the material. The results indicate that the non-uniform temperature gradients caused by transient thermal loads are the primary drivers of subsurface stress state reversal (tension-compression conversion). This, in turn, interacts with the material microstructure, leading to the maximum ERR occurring in the subsurface region on the windward side. Furthermore, bending constraints can double the peak ERR compared to unconstrained conditions. Based on parametric analysis, design guidelines for repeatable use, focusing on low ERR, are proposed. These guidelines highlight the optimization directions for CMC thermal structures, including gradient modulus, high thermal conductivity, low thermal expansion, and thin-walled designs. Experimental validation using a 1500 °C/1.5kN thermomechanical test platform demonstrates that the C/SiC ceramic matrix composite-wing leading-edge (CMC-WLEs) thermal structure maintains its integrity after over ten cycles of loading, with no delamination or matrix cracking detected through nondestructive testing. This study offers an innovative theoretical-experimental methodology for the synergistic optimization of materials and structures in reusable CMC thermal structures and damage-tolerant design, which is of significant engineering importance for overcoming the design challenges in hypersonic vehicle thermal protection systems.

     

/

返回文章
返回