EI、Scopus 收录
中文核心期刊

基于IB-LBFS和NFE的大变形膜结构流固耦合数值模拟

FLUID STRUCTURE INTERACTION SIMULATION BASED ON IB-LBFS AND NFE FOR LARGE DEFORMATION MEMBRANE

  • 摘要: 在航天航空工程领域, 以降落伞、飞艇等为代表的柔性织物飞行器在非定常气动力作用下呈现的非线性动力学响应与复杂流动特征, 已成为大变形流固耦合(fluid structure interaction, FSI)研究的前沿挑战. 这类超弹性膜结构在气动载荷作用下产生的几何非线性、材料非线性和边界非线性耦合现象, 给传统数值模拟方法带来了网格畸变、界面追踪和能量守恒等多重技术难题. 文章面向此类FSI数值模拟需求, 提出将浸入边界-格子玻尔兹曼通量求解(immersed boundary-lattice Boltzmann flux solver, IB-LBFS)方法和膜结构非线性有限元(nonlinear finite elements, NFE)方法结合, 建立了双向流固耦合计算框架, 实现了四大核心功能: 黏性流动动态变形边界识别、流体-结构载荷与物面动态重构、超弹性材料非规则薄膜结构求解和大规模并行计算. 以恒压充气囊体为研究对象, 对自由来流作用下气囊与黏性流体间的流固耦合效应进行分析. 结果表明, 该算法预测数据符合流场分布特性及结构响应发展规律. 开发的双向强流固耦合计算程序可进一步应用于航空降落伞、飞艇等充气式飞行器的流固耦合效应评估, 为未来柔性飞行器结构设计、强度校核及飞行可靠性评估提供理论参考.

     

    Abstract: In the field of aerospace engineering, the nonlinear dynamic response and complex flow characteristics of flexible fabric aircraft, such as parachutes and airships, under unsteady aerodynamic forces represent a frontier challenge in the study of large deformation fluid-structure interaction (FSI). The coupling phenomena of geometric nonlinearity, material nonlinearity, and boundary nonlinearity for hyper-elastic membrane structures subjected to aerodynamic loads have introduced significant technical challenges to traditional numerical simulation methods, including issues related to mesh distortion, interface tracking, and energy conservation. In this paper, we address the numerical simulation requirements of such FSI problems by integrating the immersed boundary-lattice Boltzmann flux solver (IB-LBFS) method with the nonlinear finite element (NFE) method for membrane structures. This integration establishes a fluid-structure coupling computational framework that achieves four core functionalities: Dynamic deformation boundary identification for viscous flows, dynamic reconstruction of fluid-structure loads and surfaces, solution of hyper-elastic material irregular membrane structures, and large-scale parallel computing. Using a constant-pressure inflated bag as the research object, we analyze the fluid-structure coupling effect between the airbag and the viscous fluid under free incoming flow conditions. The results demonstrate that the predicted data from the model align well with the flow field distribution characteristics and the development trends of structural responses. The developed fluid-structure coupling computational program can be further utilized for evaluating the FSI effects of inflatable aircraft, such as aviation parachutes and airships, providing a theoretical basis for structural design, strength verification, and flight reliability assessment of future flexible aircraft.

     

/

返回文章
返回