EI、Scopus 收录
中文核心期刊
刘昊, 瞿叶高, 孟光. 斜激波冲击下层合壁板-空腔系统流-固-声耦合动力学分析. 力学学报, 2024, 56(4): 1-10. DOI: 10.6052/0459-1879-23-546
引用本文: 刘昊, 瞿叶高, 孟光. 斜激波冲击下层合壁板-空腔系统流-固-声耦合动力学分析. 力学学报, 2024, 56(4): 1-10. DOI: 10.6052/0459-1879-23-546
Liu Hao, Qu Yegao, Meng Guang. Fluid-structure-acoustic analysis of a composite panel-cavity system subjected to an oblique shock impact. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1-10. DOI: 10.6052/0459-1879-23-546
Citation: Liu Hao, Qu Yegao, Meng Guang. Fluid-structure-acoustic analysis of a composite panel-cavity system subjected to an oblique shock impact. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1-10. DOI: 10.6052/0459-1879-23-546

斜激波冲击下层合壁板-空腔系统流-固-声耦合动力学分析

FLUID-STRUCTURE-ACOUSTIC ANALYSIS OF A COMPOSITE PANEL-CAVITY SYSTEM SUBJECTED TO AN OBLIQUE SHOCK IMPACT

  • 摘要: 斜激波作用下复合材料壁板-空腔系统气动弹性问题涉及非线性气动力、壁板大变形振动和声腔流体声波的强耦合作用, 是高速飞行器弹性壁板设计中关注的重要问题. 以往研究主要分析声腔恒定压力对壁板颤振特性的影响, 忽略了声场与结构之间的动态耦合特性. 为了弥补这一研究缺陷, 文章提出一种隐式分区计算方法实现对高速可压缩流体、大变形壁板和声腔流体声波3个物理场进行强耦合计算. 基于任意拉格朗日−欧拉(arbitrary Lagrangian Eulerian, ALE)框架的有限体积法求解可压缩黏性流体Navier-Stokes方程, 采用高阶剪切锯齿理论和有限元方法建立复合材料壁板非线性动力学模型, 采用波动方程描述空腔内可压缩声学流体. 揭示了空腔物理参数(声学流体密度、平均压力和空腔深度等)对壁板-空腔系统气动弹性响应的影响规律, 发现了若干新现象: 改变空腔物理参数可导致壁板运动从定点稳定静变形转变到周期极限环颤振; 空腔内声学流体的“弹簧效应”导致壁板表面声压载荷反相位作用于壁板运动; 特定空腔深度比下, 空腔声模态变化会改变声压脉动与壁板振动的相位关系, 导致壁板临界颤振动压降低.

     

    Abstract: In the field of high-speed vehicles, it is crucial to understand the aeroelastic response of a panel backed with a cavity subjected to an impinging oblique shock, which involves nonlinear aerodynamic loads, large deformable structures, and the mutual interaction between the structure and acoustic field. Most researchers have assumed a constant acoustic pressure within the cavity and ignored the dynamic coupling properties between the acoustic field and the structure when investigating the cavity effect on the flutter behavior of the panel. In this paper, to fill this gap, an implicitly partitioned numerical method is proposed for fluid-structure-acoustic strong coupling iterative calculations of three physical fields, such as high-speed compressible fluid, large-deformable plate, and sound wave in acoustic cavity. The method is formulated with the unsteady Navier-Stokes equations in an arbitrary Lagrangian-Eulerian finite volume framework, the geometrical nonlinear composite laminated beam model which based on the general higher-order shear deformation zig-zag theory and discretized by the finite element method, and the linear acoustic wave equation for the stationary compressible inviscid acoustic fluid in the cavity. The impacts of acoustic fluid density, cavity pressure, and cavity depth on the aerodynamic response of the panel-cavity system subjected to an oblique shock are studied. Some new findings are revealed. The alterations in the physical parameters of the cavity prompt a transition in the vibration regime of the panel-cavity aeroelastic system, shifting from a fixed-point stable regime to an asymmetric periodic limit cycle oscillation regime. The study reveals a strong mutual interaction between the acoustic cavity and the panel, where the acoustic pressure load opposes the motion of the panel, a phenomenon attributed to the 'spring effect' of the enclosed fluid. Notably, for certain depth ratios, the acoustic modal properties of the cavity altered the distribution of acoustic pressure loads applied to the panel, thereby reducing the critical flutter dynamic pressure.

     

/

返回文章
返回