EI、Scopus 收录
中文核心期刊
靳葳, 刘佳奇, 张琦炜, 方虹斌. 基于神经-肌骨-外骨骼耦合仿真框架的平地和上坡行走动力学分析. 力学学报, 2024, 56(3): 817-831. DOI: 10.6052/0459-1879-23-538
引用本文: 靳葳, 刘佳奇, 张琦炜, 方虹斌. 基于神经-肌骨-外骨骼耦合仿真框架的平地和上坡行走动力学分析. 力学学报, 2024, 56(3): 817-831. DOI: 10.6052/0459-1879-23-538
Jin Wei, Liu Jiaqi, Zhang Qiwei, Fang Hongbin. Dynamic analysis of horizontal and uphill walking based on the neuro-musculoskeletal-exoskeletal coupled simulation framework. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 817-831. DOI: 10.6052/0459-1879-23-538
Citation: Jin Wei, Liu Jiaqi, Zhang Qiwei, Fang Hongbin. Dynamic analysis of horizontal and uphill walking based on the neuro-musculoskeletal-exoskeletal coupled simulation framework. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 817-831. DOI: 10.6052/0459-1879-23-538

基于神经-肌骨-外骨骼耦合仿真框架的平地和上坡行走动力学分析

DYNAMIC ANALYSIS OF HORIZONTAL AND UPHILL WALKING BASED ON THE NEURO-MUSCULOSKELETAL-EXOSKELETAL COUPLED SIMULATION FRAMEWORK

  • 摘要: 评估人体穿戴外骨骼后的运动性能是指导外骨骼硬件迭代和控制策略优化的重要依据. 与传统的基于实验的评估相比, 基于人-外骨骼耦合系统动力学仿真的评估避免了平台搭建和实地测试、实验数据分析处理的巨大人力和时间成本. 此外, 如将人体神经肌骨动力学纳入人-外骨骼耦合系统, 动力学仿真还能够生成肌肉激活、肌肉力和关节力矩等实验中难以测量的生理学和生物力学信息, 从而可以从肌肉发力的层面评估不同环境下穿戴外骨骼对人体运动的影响. 本研究以人体肌骨-髋关节外骨骼耦合系统为研究对象, 基于考虑人体神经肌骨动力学、足地接触和人-外骨骼交互作用的完整神经-肌骨-外骨骼耦合正向动力学仿真框架, 对系统在平地和上坡 (5.71 ^\circ , 10%) 两种场景以0.8 m/s步速行走的动力学进行了比较研究. 通过给定模型中的神经肌肉反射参数, 综合考虑系统运动状态、肌肉收缩动力学、肌骨运动学、肌肉代谢、不同环境下的地反力和人机交互力等因素, 并采用协方差矩阵自适应进化策略进行分阶段多目标优化, 可以在不需要实验数据输入的条件下, 高效完成全系统的动力学仿真. 计算结果表明, 所提仿真框架不仅能够生成包括肌肉激活、肌肉力、关节力矩和关节角度在内的完整生理学和生物力学信号, 还能够反映和解释不同肌肉的激活模式随步行环境的适应性变化. 此外还在与仿真情况一致的步行条件下进行了人体穿戴外骨骼行走测试, 并进一步将肌肉激活数据与测得的肌电信号对比. 结果表明, 仿真与实验的肌肉激活结果保持了较高的相关性, 并呈现出相对于地形坡度基本一致的变化规律; 在上坡行走时, 腘绳肌、臀大肌、髂腰肌和比目鱼肌的肌肉激活程度的RMS值均显著高于平地行走的情况, 而股直肌与胫骨前肌的肌肉激活程度的RMS值则有所下降. 上述结果表明, 提出的动力学仿真框架可以在无实验数据输入的条件下有效且准确地捕捉在不同地形中行走时肌肉激活模式的定性差异. 本研究为人体肌骨-外骨骼耦合系统在多场景下的行走仿真与性能评估提供了新的途径, 也为外骨骼设计与控制策略的优化提供了理论参考和仿真分析方法.

     

    Abstract: The motion performance evaluation of human walking with an exoskeleton is an important guide for exoskeleton hardware iteration and control strategy optimization. Compared to the conventional experimental-based evaluation, that based on the dynamic simulation of the musculoskeletal-exoskeletal coupled system avoids the immense time and labor expense of platform establishing, experimenting and data processing. Moreover, further taking the human neuromuscular dynamics into account, the forward dynamic simulation of the coupled musculoskeletal-exoskeletal system can also generate physiological and biomechanical information such as muscle activation, muscle force, and joint torque that are unmeasurable during the experiment. This enables the muscle-level evaluation of human kinematics wearing the exoskeleton under various environments. Based on a comprehensive neuro-musculoskeletal-exoskeletal coupled dynamic simulation framework that integrates the human neuromusculoskeletal dynamics, foot-ground contact, and human-exoskeleton interaction, this study focuses on the human-exoskeleton coupled system and researched the kinematics of the system walking on the horizontal and uphill (5.71 ^\circ , 10%) treadmill at 0.8 m/s. The neuromuscular reflex parameters in the model are decided using the covariance matrix adaptation evolution strategy with the stepwise, multi-objective optimization, with multidimensional criteria considered, including the system motion, muscle expenditure, foot-ground reaction forces, etc., and then efficient system dynamic simulation can be accomplished without experiment data input. Results showed that the proposed framework can not only generate a full range of physiological and biomechanical signals including muscle activation, muscle force, joint torque, and joint angle, but also reflex and explain the adaptive change of muscle activation patterns to the walking environment variation. We further conducted experiments where the subject wore the exoskeleton walking under the same conditions, and compared the muscle activation with the measured sEMG signals. Results demonstrated that the muscle activities and their changing tendency concerning the ground slope in simulation and experiment maintained high consistency; The RMS values of activation of hamstrings, gluteus maximus, iliopsoas, and soleus when walking uphill increased significantly compared to those when walking horizontally, while that of rectus femoris and tibialis anterior reduced comparatively. The results above confirmed the effectiveness and accuracy of the proposed simulation framework in capturing qualitative variance of muscle activation patterns induced by terrain variation without experimental input. The study provides a new approach to conducting walking simulation and performance evaluation of the human-exoskeleton coupled system under multiple scenarios, and offers a theoretical reference and a simulation method for future research on hardware design and control strategy optimization of the exoskeleton.

     

/

返回文章
返回