EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流固耦合的压气机转子叶片非同步振动分析

汪松柏 霍嘉欣 赵星 陈勇 吴亚东 张军

汪松柏, 霍嘉欣, 赵星, 陈勇, 吴亚东, 张军. 基于流固耦合的压气机转子叶片非同步振动分析. 力学学报, 2024, 56(3): 1-9 doi: 10.6052/0459-1879-23-435
引用本文: 汪松柏, 霍嘉欣, 赵星, 陈勇, 吴亚东, 张军. 基于流固耦合的压气机转子叶片非同步振动分析. 力学学报, 2024, 56(3): 1-9 doi: 10.6052/0459-1879-23-435
Wang Songbai, Huo Jiaxin, Zhao Xing, Chen Yong, Wu Yadong, Zhang Jun. Analysis on non-synchronous vibration of compressor rotor blades based on fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 1-9 doi: 10.6052/0459-1879-23-435
Citation: Wang Songbai, Huo Jiaxin, Zhao Xing, Chen Yong, Wu Yadong, Zhang Jun. Analysis on non-synchronous vibration of compressor rotor blades based on fluid-structure interaction. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 1-9 doi: 10.6052/0459-1879-23-435

基于流固耦合的压气机转子叶片非同步振动分析

doi: 10.6052/0459-1879-23-435
基金项目: 国家科技重大专项资助项目(J2022-Ⅳ-0010-0024)
详细信息
    通讯作者:

    陈勇, 讲师, 主要研究方向为航空发动机结构强度. E-mail: yongchen@sjtu.edu.cn

  • 中图分类号: V231.3

ANALYSIS ON NON-SYNCHRONOUS VIBRATION OF COMPRESSOR ROTOR BLADES BASED ON FLUID-STRUCTURE INTERACTION

  • 摘要: 压气机转子叶片非同步振动是近年来发现的一类新气动弹性问题, 表现为叶片振动频率与转频不同步且具有锁频现象, 严重影响航空发动机的可靠性和运行安全, 目前对其产生机理并不完全清楚. 为了深入研究压气机内不稳定流动与叶片非同步振动之间的耦合机制, 基于时间推进的方法建立了多级压气机转子叶片全环的双向流固耦合模型, 数值研究了刚性叶片与非同步振动柔性叶片的非定常流场、气流激励频率和结构响应特征, 揭示了压气机转子叶片非同步振动的流固耦合机制. 结果表明: 近失速工况下, 转子叶尖吸力面径向分离涡的周期性脱落及再附过程是导致叶尖压力剧烈波动的主要原因, 其3倍谐波激励频率与转子一阶弯曲固有频率接近, 提供了叶片非同步振动的初始气流激励源. 叶片非同步振动发生时, 位移响应表现为等幅值的极限环特征, 振动以一阶弯曲模态主导, 径向分离涡产生的非整数倍气流激励频率及其谐波频率最终锁定为叶片一阶弯曲固有频率, 非同步振动的运动胁迫使得相邻通道叶尖流场周向趋于一致. 研究成果及对叶片非同步振动流固耦合机制的认识可为压气机内部不稳定流动诱发的叶片振动失效分析提供有益参考.

     

  • 图  1  数值计算网格

    Figure  1.  Numerical calculation grid

    图  2  流固耦合迭代方案

    Figure  2.  Fluid-structure interaction scheme

    图  3  不同叶高数值探针静压波动的时间历程和频谱

    Figure  3.  Time history and frequency spectrum of static pressure fluctuation of numerical probes for different spans

    图  4  98%叶高截面相对马赫数分布

    Figure  4.  Distribution of relative Mach number at 98% span

    图  5  转子出口相对马赫数分布

    Figure  5.  Distribution of relative Mach number at rotors exits

    图  6  转子前缘静压波动的SFFT分析

    Figure  6.  SFFT analysis of static pressure fluctuation at rotor leading edge

    图  7  转子叶尖流线图

    Figure  7.  Streamline diagram of rotor blade tip

    图  8  Q准则下叶尖径向分离涡结构

    Figure  8.  Radial separation vortex structure near the tip region using Q-criterion

    图  9  转子叶片前3阶模态

    Figure  9.  The first three-order of rotor blade

    图  10  转子叶片共振转速图

    Figure  10.  Campbell diagram of rotor blade

    图  11  转子叶片瞬态总位移云图

    Figure  11.  Total transient displacement of rotor blades

    图  12  非同步振动下数值探针静压波动的时间历程和频谱

    Figure  12.  Time history and frequency spectrum of static pressure fluctuation of numerical probes during NSV

    图  13  转子叶尖前缘总位移响应的时间历程和频谱

    Figure  13.  Time history and frequency spectrum of total displacement response at leading edge

    图  14  转子叶片非同步振动响应的相图

    Figure  14.  Phase diagrams of rotor blades during NSV

    图  15  非同步振动下98%叶高截面相对马赫数分布

    Figure  15.  Distribution of relative Mach number at 98% span during NSV

    图  16  非同步振动下转子出口相对马赫数分布

    Figure  16.  Distribution of relative Mach number at rotors exits during NSV

  • [1] 王增增, 马宏伟. 航空发动机轴流压气机非整阶振动实验研究进展. 航空动力学报, 2022, 37(11): 2416-2429 (Wang Zengzeng, Ma Hongwei. Overview of experimental reasearch on non-synchronous vibration in aero-engine axial compressor. Journal of Aerospace Power, 2022, 37(11): 2416-2429 (in Chinese)

    Wang Zengzeng, Ma Hongwei. Overview of experimental reasearch on non-synchronous vibration in aero-engine axial compressor. Journal of Aerospace Power, 2022, 37(11): 2416-2429 (in Chinese)
    [2] 许登科, 董旭, 徐瑞泽等. 压气机流动稳定性自适应控制方法研究进展. 力学学报, 2022, 54(3): 559-576 (Xu Dengke, Dong Xu, Xu Ruize, et al. Research progress of adaptive control methods for compressor flow stability. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 559-576 (in Chinese)

    Xu Dengke, Dong Xu, Xu Ruize, et al. Research progress of adaptive control methods for compressor flow stability. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 559-576 (in Chinese)
    [3] Moller D, Schiffer HP. On the mechanism of spike stall inception and near stall nonsynchronous vibration in an axial compressor. Journal of Engineering for Gas Turbines and Power, 2021, 143: 041001 doi: 10.1115/1.4049663
    [4] Yang ZY, Wu YD, Liu ZL, et al. Tip flow on rotating instability on an axial compressor with different tip clearances. Aerospace Science and Technology, 2023, 139: 108364 doi: 10.1016/j.ast.2023.108364
    [5] Zheng Y, Gao QZ, Yang H. Non-synchronous blade vibration analysis of a transonic fan. Chinese Journal of Aeronautics, 2023, 36(1): 178-190 doi: 10.1016/j.cja.2022.04.011
    [6] Baumgartner M, Kameier F, Hourmouziadis J. Non-engine order blade vibration in a high pressure compressor//Proceedings of the 12th International Symposium on Airbreathing Engines, 1995
    [7] Kielb R, Barter JW, Thomas JP, et al. Blade excitation by aerodynamic instabilities: A compressor blade study//Proceedings of the ASME Turbo Expo 2003, GT2003-38634
    [8] Jüngst M, Holzinger F, Schiffer HP, et al. Analysing non-synchronous blade vibration in a transonic compressor rotor//Proceedings of the 11th European Conference on Turbomachinery Fluid Dynamic & Thermodynamics, 2015
    [9] Hollenbach R, Kielb R, Hall K. Extending a van der pol-based reduced-oeder model for fluid-structure interaction applied to non- synchronous vibrations in turbomachinery. Journal of Turbomachinery, 2022, 144(3): 031006
    [10] Hollenbach R, Kielb R, Hall K. A fluid–structure interaction tool using a van der pol-based reduced-order model for buffet and nonsynchronous vibrations. Journal of Turbomachinery, 2023, 145(1): 011009 doi: 10.1115/1.4055447
    [11] Hollenbach R, Kielb R, Hall K. An improved preliminary design tool for turbomachinery blades using van der pol based reduced-order model for non-synchronous vibrations//Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, 2022, GT2022- 86120
    [12] Gan J, Im HS, Espinal D, et al. Investigation of a compressor rotor non-synchronous vibration with and without fluid-structure interaction//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014, GT2014-26478
    [13] Gan J, Im HS, Zha GC. Numerical examination of lock-in hypothesis of non-synchronous vibration in an axial compressor//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, GT2017-65244
    [14] Han L, Wei DS, Wang YR, et al. Lock-in phenomenon of tip clearance flow and its influence on aerodynamic damping under specified vibration on an axial transonic compressor rotor. Chinese Journal of Aeronautics, 2022, 35(3): 185-200 doi: 10.1016/j.cja.2021.02.016
    [15] Han L, Wei DS, Wang YR, et al. Locked-in phenomenon between tip clearance flow instabilities and enforced blade motion in axial transonic compressor rotors//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2020, GT2020-16050
    [16] Zhu XC, Hu P, Lin T, et al. Numerical investigations on non- synchronous vibration and frequency lock-in of low-pressure steam turbine last stage. Proceedings of the Institution of Mechanical Engineers, Part A : Journal of Power and Energy, 2022, 236(4): 647- 661
    [17] 程荣辉, 余华蔚, 汪松柏等. 多级压气机转子负荷系数对叶片非同步振动的影响. 航空学报, 2023, 44(14): 628722 (Cheng Ronghui, Yu Huawei, Wang Songbai, et al. Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628722 (in Chinese)

    Cheng Ronghui, Yu Huawei, Wang Songbai, et al. Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628722 (in Chinese)
    [18] 汪松柏, 张少平, 余华蔚等. 高负荷压气机旋转不稳定诱发转子叶片非同步振动的实验研究. 推进技术, 2023, 44(2): 22010036 (Wang Songbai, Zhang Shaoping, Yu Huawei, et al. Experimental research on rotor blade non-synchronous vibrations induced by rotating instability of high load compressor. Journal of Propulsion Technology, 2023, 44(2): 22010036 (in Chinese)

    Wang Songbai, Zhang Shaoping, Yu Huawei, et al. Experimental research on rotor blade non-synchronous vibrations induced by rotating instability of high load compressor. Journal of Propulsion Technology, 2023, 44(2): 22010036 (in Chinese)
    [19] Gao FL, Yang MS, Zhang ZB, et al. Experiment and theoretical analysis of a type of non-synchronous vibration in a high pressure compressor//Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, 2021
    [20] 许志远, 杨明绥, 王萌. 压气机声共振特征理论预测与试验研究. 航空学报, 2023, 44(14): 628236 (Xu Zhiyuan, Yang Mingsui, Wang Meng. Theoretical prediction and experimental study on acoustic resonance characteristics of certain type of compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628236 (in Chinese)

    Xu Zhiyuan, Yang Mingsui, Wang Meng. Theoretical prediction and experimental study on acoustic resonance characteristics of certain type of compressor. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628236 (in Chinese)
    [21] 汪松柏, 陈勇, 吴亚东等. 轴流压气机转子叶片非同步振动的研究进展. 航空学报, 2023, 44(17): 628044 (Wang Songbai, Chen Yong, Wu Yadong, et al. Research progress on non-synchronous vibration of axial compressor rotor blade. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 628044 (in Chinese)

    Wang Songbai, Chen Yong, Wu Yadong, et al. Research progress on non-synchronous vibration of axial compressor rotor blade. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 628044 (in Chinese)
    [22] Thomassin J, Vo HD, Mureithi NW. Blade tip clearance flow and compressor NSV: The jet core feedback theory as the coupling mechanism//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air, 2007, GT2007-27286
    [23] Thomassin J, Vo HD, Mureithi NW. Experimental demonstration of the tip clearance flow resonance behind compressor non-synchronous vibration//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, 2008, GT2008-50303
    [24] Thomassin J, Vo HD, Mureithi NW. The tip clearance flow resonance behind axial compressor nonsynchronous vibration. Journal of Turbomachinery, 2011, 133(4): 041030 doi: 10.1115/1.4001368
    [25] Patel P, Yang YC, Zha GC. Improved delayed detached eddy simulation of a 1.5 stage axial compressor non-synchronous vibration//Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2020, GT2020-15073
    [26] Im HS, Zha GC. Investigation of non-synchronous vibration mechanism for a high speed axial compressor using delayed DES//Proceedings of the 52nd Aerospace Sciences Meeting, 2014
    [27] Im HS, Zha GC. Investigation of flow instability mechanism causing compressor rotor-blade nonsynchronous vibration. AIAA Journal, 2014, 52(9): 2019-2031 doi: 10.2514/1.J052781
    [28] März J, Hah C, Neise W. An experimental and numerical investigation into the mechanisms of rotating instability//Proceedings of ASME Turbo Expo 2001, GT2001-0536
    [29] Vo HD. Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations. Journal of Propulsion and Power, 2010, 26(3): 556-561 doi: 10.2514/1.26709
    [30] Tian J, Yao D, Wu YD, et al. Experimental study on rotating instability mode characteristics of axial compressor tip flow. Experiments in Fluids, 2018, 59(4): 63
    [31] Wang H, Wu YD, Yue SY, et al. Numerical investigation on the flow mechanism of multi-peak frequency feature of rotating instability. Journal of Thermal Science, 2021, 30(2): 668-681 doi: 10.1007/s11630-020-1349-4
    [32] Camp TR. A study of acoustic resonance in a low-speed multistage compressor. Journal of Turbomachinery, 1999, 121(1): 36-43 doi: 10.1115/1.2841232
    [33] Brandstetter C, Paoletti B, Ottavy X. Acoustic and convective mechanisms contributing to non-synchronous-vibrations in a multistage compressor//Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2009, GT2019-91514
    [34] Fiquet AL, Aubert S, Brandstetter C, et al. Acoustic resonance in an axial multistage compressor leading to non-synchronous blade vibration. Journal of Turbomachinery, 2021, 143(9): 091014 doi: 10.1115/1.4050626
    [35] Wu Y, An G, Chen Z, et al. Origins and structure of rotating instability-part 2: Numerical observations in a transonic axial compressor rotor//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016, GT2016-56223
    [36] Du J, Li J, Lin F, et al. The self-induced unsteadiness of tip leakage flow in an axial low-speed compressor with single circumferential casing groove. Journal of Thermal Science, 2013, 22(6): 565-572 doi: 10.1007/s11630-013-0663-5
    [37] Pullan G, Young AM, Day IJ, et al. Origins and structure of spike-type rotating stall. Journal of Turbomachinery, 2015, 137: 051007 doi: 10.1115/1.4028494
    [38] Yamada K, Kikuta H, Iwakiri K, et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor. Journal of Turbomachinery, 2013, 135(2): 021023
  • 加载中
图(16)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  32
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 录用日期:  2023-11-07
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回