EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正磁化模型的多组分铁磁性颗粒运动研究

陈巨辉 安然 舒崚峰 李丹 刘晓刚 毛颖 陈纪元 高浩铭 吕文生 孟凡奇

陈巨辉, 安然, 舒崚峰, 李丹, 刘晓刚, 毛颖, 陈纪元, 高浩铭, 吕文生, 孟凡奇. 修正磁化模型的多组分铁磁性颗粒运动研究. 力学学报, 2024, 56(1): 1-11 doi: 10.6052/0459-1879-23-432
引用本文: 陈巨辉, 安然, 舒崚峰, 李丹, 刘晓刚, 毛颖, 陈纪元, 高浩铭, 吕文生, 孟凡奇. 修正磁化模型的多组分铁磁性颗粒运动研究. 力学学报, 2024, 56(1): 1-11 doi: 10.6052/0459-1879-23-432
Chen Juhui, An Ran, Shu Lingfeng, Li Dan, Liu Xiaogang, Mao Ying, Chen Jiyuan, Gao Haoming, Lyu Wensheng, Meng Fanqi. Study on motion of multi-component ferromagnetic particles with modified magnetization model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 1-11 doi: 10.6052/0459-1879-23-432
Citation: Chen Juhui, An Ran, Shu Lingfeng, Li Dan, Liu Xiaogang, Mao Ying, Chen Jiyuan, Gao Haoming, Lyu Wensheng, Meng Fanqi. Study on motion of multi-component ferromagnetic particles with modified magnetization model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 1-11 doi: 10.6052/0459-1879-23-432

修正磁化模型的多组分铁磁性颗粒运动研究

doi: 10.6052/0459-1879-23-432
基金项目: 黑龙江省重大科技专项(2019ZX03A02)和国家自然科学基金(5210110314)资助项目
详细信息
    通讯作者:

    陈巨辉, 教授, 主要研究方向为多相流与传热. E-mail: chenjuhui@hrbust.edu.cn

STUDY ON MOTION OF MULTI-COMPONENT FERROMAGNETIC PARTICLES WITH MODIFIED MAGNETIZATION MODEL

  • 摘要: 铁磁性颗粒因具有铁磁性被广泛应用于化工环保、生化工程和能源等各个领域, 磁场具有的穿透性质, 对于采用铁磁性颗粒的系统, 可通过改变磁场控制系统内颗粒的运动状态. 文章基于传统的磁化模型, 采用相对参考系转换方法, 提出了适用范围更广的修正P-E磁化模型, 可以计算铁磁性颗粒在任意方向磁场作用下所受磁化力. 通过有限体积法(FVM)与离散单元法(DEM)耦合进行数值模拟, 验证了修正P-E磁化模型的精确性, 并模拟多组分颗粒在磁场中的运动, 对比了铁磁性颗粒与惰性颗粒在不同配比及不同磁场条件下的运动特性, 对颗粒分布、颗粒速度矢量和颗粒总能量变化3个方面进行分析. 结果表明: 在多组分颗粒系统中, 铁磁性颗粒依旧保持成链特性, 但成链速度与长度降低; 随着铁磁性颗粒占比提高, 铁磁性颗粒初始能量增大, 聚链数量与成链长度将有所增加, 约束惰性颗粒能力增强; 此外, 施加水平与竖直方向磁场时, 多组分颗粒系统达到稳定速度最快, 可以通过增大铁磁性颗粒占比有效提升稳定速度, 使系统更快趋于稳定; 而施加含有倾角的磁场时, 随着铁磁性颗粒占比升高, 铁磁性颗粒达到稳定状态需要的时间逐渐降低, 较难通过改变铁磁性颗粒占比缩短稳定所需时间.

     

  • 图  1  颗粒对相对坐标系

    Figure  1.  Relative coordinate system of particle pairs

    图  2  磁化力变化图

    Figure  2.  Magnetization force change diagram

    图  3  C1总动能

    Figure  3.  C1 Total kinetic energy

    图  4  K = 50%, 颗粒分布图

    Figure  4.  K = 50%, Particle distribution

    图  5  1 s时刻颗粒速度矢量图

    Figure  5.  Particle velocity vector diagram at 1 s

    图  6  总动能变化曲线

    Figure  6.  Total kinetic energy change curve

    图  7  1 s时刻颗粒分布图

    Figure  7.  Particle distribution map at 1 s

    图  8  总动能变化曲线 (续)

    Figure  8.  Total kinetic energy change curve (continued)

    图  9  各工况稳定时刻直方图

    Figure  9.  Histogram of stable time of each working condition

    表  1  网格无关性检验表

    Table  1.   Grid independence test table

    Minimum mesh sizeNumber of gridsTotal kinetic energy/10−8J
    1 R62790.00583
    2 R11040.00346
    3 R2480.00256
    4 R1380.00228
    5 R950.00316
    6 R640.00472
    下载: 导出CSV

    表  2  模拟参数

    Table  2.   Analog parameters

    ParameterData
    particle diameter/m0.0005
    particle density/(kg·m−3)1010
    gas density/(kg·m−3)1.293
    magnetic field direction/(°)0
    magnetic permeability/(H·m−1)8.3
    magnetic induction intensity/T0.02
    下载: 导出CSV

    表  3  模拟工况表

    Table  3.   Simulated working condition table

    Working condition Particle spacing
    C1/m 0.0005
    C2/m 0.00075
    C3/m 0.001
    下载: 导出CSV

    表  4  模拟参数表

    Table  4.   Analog parameter table

    ParameterData
    particle diameter/m0.001
    particle density/(kg·m−3)1010
    diameter of inert particles/m0.001
    density of inert particles/(kg·m−3)1010
    fluid density/(kg·m−3)1000
    number of particles300
    magnetic permeability/(H·m−1)8.3
    magnetic permeability of inert particles/(H·m−1)0
    magnetic induction intensity/T0.02
    Young’s module/GPa68.95
    Poisson’s ratio0.33
    friction coefficient of particles0.3
    normal spring stiffness of particles/(N·m−1)800
    friction coefficient of particle-wall0.3
    normal spring stiffness of walls/(N·m−1)800
    damping coefficient0.05
    下载: 导出CSV

    表  5  模拟工况表

    Table  5.   Simulated working condition table

    Working conditionMagnetic field angleNumber of ferromagnetic particlesNumber of
    inert particles
    Fraction of ferromagnetic particles /%
    C1010020033
    C23010020033
    C36010020033
    C49010020033
    C5015015050
    C63015015050
    C76015015050
    C89015015050
    C9020010066
    C103020010066
    C116020010066
    C129020010066
    下载: 导出CSV
  • [1] Saša N, Jasna R, Fatima Ž, et al. Chaotic model of brownian motion in relation to drug delivery systems using ferromagnetic particles. Mathematics, 2022, 10(24): 4791 doi: 10.3390/math10244791
    [2] Ali N, Mohsen N, Mohsen MS, et al. Separation and trapping of magnetic particles by insertion of ferromagnetic wires inside a microchip: proposing a novel geometry in magnetophoresis. Journal of Magnetism and Magnetic Materials, 2022, 560: 169424 doi: 10.1016/j.jmmm.2022.169424
    [3] Sharmili P, Rajesh S, Mahendran M, et al. Rheometric and stability analysis of additive infused magnetorheological fluids: A comparative study. The European Physical Journal E, 2023, 46(2): 6 doi: 10.1140/epje/s10189-023-00262-1
    [4] Lampaert GS, Quinci F, Ostayen VAR. Rheological texture in a journal bearing with magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2020, 499: 166218 doi: 10.1016/j.jmmm.2019.166218
    [5] Ahmed H, Qi L, Carlos JS. Magneto-rheological fluids: tele-manipulation of ferromagnetic particles with external magnetic field for flow control and zonal isolation. Geoenergy Science and Engineering, 2023, 228: 212029 doi: 10.1016/j.geoen.2023.212029
    [6] Zheng X, Xue Z, Wang Y, et al. Modeling of particle capture in high gradient magnetic separation: A review. Powder Technology, 2019, 352: 159-169 doi: 10.1016/j.powtec.2019.04.048
    [7] Zheng X, Du L, Li S, et al. A novel method for efficient recovery of ilmenite by high gradient magnetic separation coupling with magnetic fluid. Minerals Engineering, 2023, 202: 108279 doi: 10.1016/j.mineng.2023.108279
    [8] Li L, He M, Peng K, et al. A novel magnetically oscillatory fluidized bed using micron-sized magnetic particles for continuous capture of emulsified oil droplets. Separation and Purification Technology, 2023, 312: 123424 doi: 10.1016/j.seppur.2023.123424
    [9] Wang B, Tang T, Yan S, et al. Magnetic segregation behaviors of a binary mixture in fluidized beds. Powder Technology, 2022, 397: 117031 doi: 10.1016/j.powtec.2021.117031
    [10] Lima AAA, Quirino JN, Cavina R, et al. Bentonite functionalized with magnetite nanoparticles synthesized from mining sludge: A new magnetic material for removing iron and manganese ions from water. Journal of Nanoparticle Research, 2023, 25(7): 155
    [11] Baresel C, Schaller V, Jonasson C, et al. Functionalized magnetic particles for water treatment. Heliyon, 2019, 5(8): e02325 doi: 10.1016/j.heliyon.2019.e02325
    [12] 林添明, 荆国华. 磁稳流化床研究与应用进展. 化工进展, 2012, 31(9): 1885-1890 (Lin Tianming, Jing Guohua. Research and application progress of magnetically stabilized fluidized bed. Chemical Industry and Engineering Progress, 2012, 31(9): 1885-1890 (in Chinese) doi: 10.16085/j.issn.1000-6613.2012.09.002

    Lin Tianming, Jing Guohua. Research and application progress of magnetically stabilized fluidized bed. Chemical Industry and Engineering Progress, 2012, 31(9): 1885-1890 (in Chinese) doi: 10.16085/j.issn.1000-6613.2012.09.002
    [13] Yu D, Wang Y, Yu B, et al. Numerical simulation and application of nanomagnetic enzyme in a liquid-solid magnetic fluidized bed. Process Biochemistry, 2018, 75: 121-129 doi: 10.1016/j.procbio.2018.09.019
    [14] Yu D, Ma X, Huang Y, et al. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. International Journal of Food Engineering, 2021, 18(1): 15-26
    [15] 李响. 外场作用下流化床中气固两相流动数值模拟. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2010 (Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)

    Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)
    [16] Han K, Feng YT, Owen DRJ. Three-dimensional modelling and simulation of magnetorheological fluids. International Journal For Numerical Methods In Engineering, 2010, 84(11): 1273-1302 doi: 10.1002/nme.2940
    [17] Rosensweig RE. Fluidization: Hydrodynamic stabilization with a magnetic field. Science, 1979, 204(4388): 57-60 doi: 10.1126/science.204.4388.57
    [18] Pinto-Espinoza J. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): Theory, experiment, and CFD-DPM simulation. [PhD Thesis]. Corvallis: Oregon State University, 2002
    [19] Hao Z, Li X, Lu H, et al. Numerical simulation of particle motion in a gradient magnetically assisted fluidized bed. Powder Technol, 2010, 203(3): 555-564 doi: 10.1016/j.powtec.2010.06.022
    [20] Ke C, Shu S, Zhang H, et al. LBM-IBM-DEM modelling of magnetic particles in a fluid. Powder Technology, 2017, 314: 264-280 doi: 10.1016/j.powtec.2016.08.008
    [21] Fan G, Song Y, Xia M, et al. Photocatalytic inactivation of algae in a fluidized bed photoreactor with an external magnetic field. Journal of Environmental Management, 2022, 307: 114552 doi: 10.1016/j.jenvman.2022.114552
    [22] Hao W, Zhu Q. Operating range of magnetic stabilization flow regime for magnetized fluidized bed with geldart-b magnetizable and nonmagnetizable particles. Particuology, 2022, 60: 90-98 doi: 10.1016/j.partic.2021.02.004
    [23] Valverde JM, Castellanos A. Magnetic field assisted fluidization: a modified richardson-zaki equation. China Particuology, 2007, 5(1-2): 61-70 doi: 10.1016/j.cpart.2007.01.001
    [24] Zhu Q, Zhang Q, Yang P, et al. Measuring segregation in fluidized bed with magnetizable and nonmagnetizable particles based on magnetic permeability. Fuel, 2023, 340: 127554 doi: 10.1016/j.fuel.2023.127554
    [25] 杨慧, 万东玉, 曹长青. 磁−流场耦合气-固流化床气含率的模拟. 石油化工, 2014, 43(1): 51-55 (Yang Hui, Wan Dongyu, Cao Changqing. Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields. Petrochemical Technology, 2014, 43(1): 51-55 (in Chinese)

    Yang Hui, Wan Dongyu, Cao Changqing. Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields. Petrochemical Technology, 2014, 43(1): 51-55 (in Chinese)
    [26] 刘金平. 微小磁流化床内纳米颗粒流动特性的数值模拟研究. [硕士论文]. 青岛: 青岛科技大学, 2014 (Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)

    Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)
    [27] Chen H, Liu Y, Liu B, et al. CPFD simulation of multicomponent bed material diffusion in dense phase zone of bubbling bed. Journal of North China Electric Power University, 2021, 48(1): 114-120
    [28] Song X, Wang Q, Yang X, et al. Mass transfer simulation of multi-component particles in a fluidized bed, Journal of Chinese Society of Power Engineering, 2021, 41(1): 1-7
    [29] Ganzha VL, Saxena SC. Hydrodynamic behavior of magnetically stabilized fluidized beds of magnetic particles. Powder Technology, 2000, 107(1): 31-35
    [30] Jovanovic GN, Somchamni T, Atwater JE, et al. Magnetically assisted liquid–solid fluidization in normal and microgravity conditions: experiment and theory. Powder Technology, 2004, 148(2-3): 80-91 doi: 10.1016/j.powtec.2004.09.028
    [31] Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press, 1987
    [32] Mindlin RD, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 1953, 20(3): 327-344 doi: 10.1115/1.4010702
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  25
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-11-13

目录

    /

    返回文章
    返回