STUDY ON MOTION OF MULTI-COMPONENT FERROMAGNETIC PARTICLES WITH MODIFIED MAGNETIZATION MODEL
-
摘要: 铁磁性颗粒因具有铁磁性被广泛应用于化工环保、生化工程和能源等各个领域, 磁场具有的穿透性质, 对于采用铁磁性颗粒的系统, 可通过改变磁场控制系统内颗粒的运动状态. 文章基于传统的磁化模型, 采用相对参考系转换方法, 提出了适用范围更广的修正P-E磁化模型, 可以计算铁磁性颗粒在任意方向磁场作用下所受磁化力. 通过有限体积法(FVM)与离散单元法(DEM)耦合进行数值模拟, 验证了修正P-E磁化模型的精确性, 并模拟多组分颗粒在磁场中的运动, 对比了铁磁性颗粒与惰性颗粒在不同配比及不同磁场条件下的运动特性, 对颗粒分布、颗粒速度矢量和颗粒总能量变化3个方面进行分析. 结果表明: 在多组分颗粒系统中, 铁磁性颗粒依旧保持成链特性, 但成链速度与长度降低; 随着铁磁性颗粒占比提高, 铁磁性颗粒初始能量增大, 聚链数量与成链长度将有所增加, 约束惰性颗粒能力增强; 此外, 施加水平与竖直方向磁场时, 多组分颗粒系统达到稳定速度最快, 可以通过增大铁磁性颗粒占比有效提升稳定速度, 使系统更快趋于稳定; 而施加含有倾角的磁场时, 随着铁磁性颗粒占比升高, 铁磁性颗粒达到稳定状态需要的时间逐渐降低, 较难通过改变铁磁性颗粒占比缩短稳定所需时间.Abstract: Ferromagnetic particles are widely used in chemical environmental protection, biochemical engineering, energy and other fields because of their ferromagnetism. The penetrating nature of the magnetic field, for systems employing ferromagnetic particles, can be controlled by changing the magnetic field to control the motion of the particles within the system. In this paper, based on the traditional magnetization model, a modified P-E magnetization model with a wider range of applicability is proposed by using the relative reference system conversion method, which can calculate the magnetization force on ferromagnetic particles under the action of a magnetic field in any direction. Numerical simulations by coupling the finite volume method (FVM) with the discrete element method (DEM) to verify the accuracy of the modified P-E magnetization model and to simulate the motion of multicomponent particles in a magnetic field. The motion characteristics of ferromagnetic particles and inert particles in different ratios and magnetic fields were compared. The particle distribution, particle velocity vector and particle total energy were analyzed. The results show that in the multi-component particle system, the ferromagnetic particles still maintain the chain formation characteristics, but the chain formation speed and length decrease. The initial energy of ferromagnetic particles increases as the proportion of ferromagnetic particles grows, as does the number of polymer chains and the length of chain creation, and the ability to limit inert particles. Furthermore, when both horizontal and vertical magnetic fields are applied, the multi-component particle system achieves the fastest rate of stability. The rate of stabilization can be efficiently increased by increasing the number of ferromagnetic particles, causing the system to stabilize faster. When the magnetic field containing inclination Angle is applied, the time required for ferromagnetic particles to reach the stable state gradually decreases with the increase of the proportion of ferromagnetic particles, and it is difficult to shorten the stability time by changing the proportion of ferromagnetic particles.
-
表 1 网格无关性检验表
Table 1. Grid independence test table
Minimum mesh size Number of grids Total kinetic energy/10−8J 1 R 6279 0.00583 2 R 1104 0.00346 3 R 248 0.00256 4 R 138 0.00228 5 R 95 0.00316 6 R 64 0.00472 表 2 模拟参数
Table 2. Analog parameters
Parameter Data particle diameter/m 0.0005 particle density/(kg·m−3) 1010 gas density/(kg·m−3) 1.293 magnetic field direction/(°) 0 magnetic permeability/(H·m−1) 8.3 magnetic induction intensity/T 0.02 表 3 模拟工况表
Table 3. Simulated working condition table
Working condition Particle spacing C1/m 0.0005 C2/m 0.00075 C3/m 0.001 表 4 模拟参数表
Table 4. Analog parameter table
Parameter Data particle diameter/m 0.001 particle density/(kg·m−3) 1010 diameter of inert particles/m 0.001 density of inert particles/(kg·m−3) 1010 fluid density/(kg·m−3) 1000 number of particles 300 magnetic permeability/(H·m−1) 8.3 magnetic permeability of inert particles/(H·m−1) 0 magnetic induction intensity/T 0.02 Young’s module/GPa 68.95 Poisson’s ratio 0.33 friction coefficient of particles 0.3 normal spring stiffness of particles/(N·m−1) 800 friction coefficient of particle-wall 0.3 normal spring stiffness of walls/(N·m−1) 800 damping coefficient 0.05 表 5 模拟工况表
Table 5. Simulated working condition table
Working condition Magnetic field angle Number of ferromagnetic particles Number of
inert particlesFraction of ferromagnetic particles /% C1 0 100 200 33 C2 30 100 200 33 C3 60 100 200 33 C4 90 100 200 33 C5 0 150 150 50 C6 30 150 150 50 C7 60 150 150 50 C8 90 150 150 50 C9 0 200 100 66 C10 30 200 100 66 C11 60 200 100 66 C12 90 200 100 66 -
[1] Saša N, Jasna R, Fatima Ž, et al. Chaotic model of brownian motion in relation to drug delivery systems using ferromagnetic particles. Mathematics, 2022, 10(24): 4791 doi: 10.3390/math10244791 [2] Ali N, Mohsen N, Mohsen MS, et al. Separation and trapping of magnetic particles by insertion of ferromagnetic wires inside a microchip: proposing a novel geometry in magnetophoresis. Journal of Magnetism and Magnetic Materials, 2022, 560: 169424 doi: 10.1016/j.jmmm.2022.169424 [3] Sharmili P, Rajesh S, Mahendran M, et al. Rheometric and stability analysis of additive infused magnetorheological fluids: A comparative study. The European Physical Journal E, 2023, 46(2): 6 doi: 10.1140/epje/s10189-023-00262-1 [4] Lampaert GS, Quinci F, Ostayen VAR. Rheological texture in a journal bearing with magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2020, 499: 166218 doi: 10.1016/j.jmmm.2019.166218 [5] Ahmed H, Qi L, Carlos JS. Magneto-rheological fluids: tele-manipulation of ferromagnetic particles with external magnetic field for flow control and zonal isolation. Geoenergy Science and Engineering, 2023, 228: 212029 doi: 10.1016/j.geoen.2023.212029 [6] Zheng X, Xue Z, Wang Y, et al. Modeling of particle capture in high gradient magnetic separation: A review. Powder Technology, 2019, 352: 159-169 doi: 10.1016/j.powtec.2019.04.048 [7] Zheng X, Du L, Li S, et al. A novel method for efficient recovery of ilmenite by high gradient magnetic separation coupling with magnetic fluid. Minerals Engineering, 2023, 202: 108279 doi: 10.1016/j.mineng.2023.108279 [8] Li L, He M, Peng K, et al. A novel magnetically oscillatory fluidized bed using micron-sized magnetic particles for continuous capture of emulsified oil droplets. Separation and Purification Technology, 2023, 312: 123424 doi: 10.1016/j.seppur.2023.123424 [9] Wang B, Tang T, Yan S, et al. Magnetic segregation behaviors of a binary mixture in fluidized beds. Powder Technology, 2022, 397: 117031 doi: 10.1016/j.powtec.2021.117031 [10] Lima AAA, Quirino JN, Cavina R, et al. Bentonite functionalized with magnetite nanoparticles synthesized from mining sludge: A new magnetic material for removing iron and manganese ions from water. Journal of Nanoparticle Research, 2023, 25(7): 155 [11] Baresel C, Schaller V, Jonasson C, et al. Functionalized magnetic particles for water treatment. Heliyon, 2019, 5(8): e02325 doi: 10.1016/j.heliyon.2019.e02325 [12] 林添明, 荆国华. 磁稳流化床研究与应用进展. 化工进展, 2012, 31(9): 1885-1890 (Lin Tianming, Jing Guohua. Research and application progress of magnetically stabilized fluidized bed. Chemical Industry and Engineering Progress, 2012, 31(9): 1885-1890 (in Chinese) doi: 10.16085/j.issn.1000-6613.2012.09.002 Lin Tianming, Jing Guohua . Research and application progress of magnetically stabilized fluidized bed. Chemical Industry and Engineering Progress,2012 ,31 (9 ):1885 -1890 (in Chinese) doi: 10.16085/j.issn.1000-6613.2012.09.002[13] Yu D, Wang Y, Yu B, et al. Numerical simulation and application of nanomagnetic enzyme in a liquid-solid magnetic fluidized bed. Process Biochemistry, 2018, 75: 121-129 doi: 10.1016/j.procbio.2018.09.019 [14] Yu D, Ma X, Huang Y, et al. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. International Journal of Food Engineering, 2021, 18(1): 15-26 [15] 李响. 外场作用下流化床中气固两相流动数值模拟. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2010 (Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese) [16] Han K, Feng YT, Owen DRJ. Three-dimensional modelling and simulation of magnetorheological fluids. International Journal For Numerical Methods In Engineering, 2010, 84(11): 1273-1302 doi: 10.1002/nme.2940 [17] Rosensweig RE. Fluidization: Hydrodynamic stabilization with a magnetic field. Science, 1979, 204(4388): 57-60 doi: 10.1126/science.204.4388.57 [18] Pinto-Espinoza J. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): Theory, experiment, and CFD-DPM simulation. [PhD Thesis]. Corvallis: Oregon State University, 2002 [19] Hao Z, Li X, Lu H, et al. Numerical simulation of particle motion in a gradient magnetically assisted fluidized bed. Powder Technol, 2010, 203(3): 555-564 doi: 10.1016/j.powtec.2010.06.022 [20] Ke C, Shu S, Zhang H, et al. LBM-IBM-DEM modelling of magnetic particles in a fluid. Powder Technology, 2017, 314: 264-280 doi: 10.1016/j.powtec.2016.08.008 [21] Fan G, Song Y, Xia M, et al. Photocatalytic inactivation of algae in a fluidized bed photoreactor with an external magnetic field. Journal of Environmental Management, 2022, 307: 114552 doi: 10.1016/j.jenvman.2022.114552 [22] Hao W, Zhu Q. Operating range of magnetic stabilization flow regime for magnetized fluidized bed with geldart-b magnetizable and nonmagnetizable particles. Particuology, 2022, 60: 90-98 doi: 10.1016/j.partic.2021.02.004 [23] Valverde JM, Castellanos A. Magnetic field assisted fluidization: a modified richardson-zaki equation. China Particuology, 2007, 5(1-2): 61-70 doi: 10.1016/j.cpart.2007.01.001 [24] Zhu Q, Zhang Q, Yang P, et al. Measuring segregation in fluidized bed with magnetizable and nonmagnetizable particles based on magnetic permeability. Fuel, 2023, 340: 127554 doi: 10.1016/j.fuel.2023.127554 [25] 杨慧, 万东玉, 曹长青. 磁−流场耦合气-固流化床气含率的模拟. 石油化工, 2014, 43(1): 51-55 (Yang Hui, Wan Dongyu, Cao Changqing. Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields. Petrochemical Technology, 2014, 43(1): 51-55 (in Chinese) Yang Hui, Wan Dongyu, Cao Changqing . Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields. Petrochemical Technology,2014 ,43 (1 ):51 -55 (in Chinese)[26] 刘金平. 微小磁流化床内纳米颗粒流动特性的数值模拟研究. [硕士论文]. 青岛: 青岛科技大学, 2014 (Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese) [27] Chen H, Liu Y, Liu B, et al. CPFD simulation of multicomponent bed material diffusion in dense phase zone of bubbling bed. Journal of North China Electric Power University, 2021, 48(1): 114-120 [28] Song X, Wang Q, Yang X, et al. Mass transfer simulation of multi-component particles in a fluidized bed, Journal of Chinese Society of Power Engineering, 2021, 41(1): 1-7 [29] Ganzha VL, Saxena SC. Hydrodynamic behavior of magnetically stabilized fluidized beds of magnetic particles. Powder Technology, 2000, 107(1): 31-35 [30] Jovanovic GN, Somchamni T, Atwater JE, et al. Magnetically assisted liquid–solid fluidization in normal and microgravity conditions: experiment and theory. Powder Technology, 2004, 148(2-3): 80-91 doi: 10.1016/j.powtec.2004.09.028 [31] Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press, 1987 [32] Mindlin RD, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 1953, 20(3): 327-344 doi: 10.1115/1.4010702 -