EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体催化铁系金属催化剂氨分解制氢研究进展

高一博 胡二江 殷阁媛 黄佐华

高一博, 胡二江, 殷阁媛, 黄佐华. 等离子体催化铁系金属催化剂氨分解制氢研究进展. 力学学报, 2023, 55(12): 2809-2826 doi: 10.6052/0459-1879-23-422
引用本文: 高一博, 胡二江, 殷阁媛, 黄佐华. 等离子体催化铁系金属催化剂氨分解制氢研究进展. 力学学报, 2023, 55(12): 2809-2826 doi: 10.6052/0459-1879-23-422
Gao Yibo, Hu Erjiang, Yin Geyuan, Huang Zuohua. Research progress in ammonia decomposition of iron series metal catalysts assisted by plasma. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2809-2826 doi: 10.6052/0459-1879-23-422
Citation: Gao Yibo, Hu Erjiang, Yin Geyuan, Huang Zuohua. Research progress in ammonia decomposition of iron series metal catalysts assisted by plasma. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2809-2826 doi: 10.6052/0459-1879-23-422

等离子体催化铁系金属催化剂氨分解制氢研究进展

doi: 10.6052/0459-1879-23-422
基金项目: 国家自然科学基金(52176131)和中央高校基本科研业务费(xzy022022043)资助项目
详细信息
    通讯作者:

    胡二江, 教授, 主要研究方向为氢能转化与利用、等离子体催化点火与燃烧调控. E-mail: hujiang@mail.xjtu.edu.cn

  • 中图分类号: TK91

RESEARCH PROGRESS IN AMMONIA DECOMPOSITION OF IRON SERIES METAL CATALYSTS ASSISTED BY PLASMA

  • 摘要: 氢能作为一种零碳二次能源被广泛应用于各种工业领域. 氨作为一种储氢载体, 具有储氢量高(17.6 wt%)、能量密度高和易液化等特点, 其分解产物只有氢气和氮气, 符合国家“碳达峰, 碳中和”的战略发展方向. 但是氨分解的活化能高, 反应条件较为苛刻. 因此, 开发安全、高效、低成本的氨分解制氢技术对于氢能发展具有重要意义. 文章首先阐明了氨分解反应的基本原理, 介绍了铁系金属催化剂催化NH3分解制氢的研究进展, Fe, Co和Ni基催化剂的NH3分解活性较高, 因为其金属−氮的结合能适中, 之后从调控活性金属中心出发, 通过加入第二金属、调控形貌、缺陷/掺杂、构建金属−载体相互作用等方面设计提高氨分解的活性, 并采用多种表征方法揭示催化剂的构效关系. 除铁系催化剂外, 还重点介绍了提高氨分解效率的等离子体技术, 回顾了等离子体的原理、种类、作用机制以及在辅助催化氨制氢方面的协同效应. 文章综述了催化NH3分解的反应机理, 介绍了目前氨分解制氢催化剂设计的最新进展, 总结了提高NH3分解制氢的策略, 强调了等离子体在辅助催化NH3分解的优势. 对于今后氨分解制氢催化剂的开发和应用具有一定的参考价值, 期望为未来氨制氢的技术发展和工业化应用提供新思路.

     

  • 图  1  (续)

    Figure  1.  (continued)

    图  2  NH3在催化剂表面的吸附解离机理, 蓝球、绿球和灰球分别代表N原子、H原子和催化剂原子[5]

    Figure  2.  Representation of the general mechanism of ammonia adsorption and dissociation mechanism of NH3 on the catalyst surface, the blue, green and grey spheres represent N, H and the atoms of the catalysts, respectively[5]

    图  4  Fe-CNFs/CMFs-5催化剂的(a)XRD图谱和(b)SEM图[14]

    Figure  4.  (a) XRD pattern and (b) SEM image of Fe-CNFs/CMFs-5 catalyst[14]

    图  5  Fe-CNFs/CMFs-3催化剂的NH3分解活性曲线[14]

    Figure  5.  NH3 conversion of Fe-CNFs/CMFs-3 catalyst[14]

    图  7  (续)

    Figure  7.  (continued)

    图  10  Ni0粒径与NH3分解的转化频率(TOFNH3)关系(Ni/Al2O3(实心)和Ni/La-Al2O3(空心))[47]

    Figure  10.  The relationship between Ni0 particle size and the NH3 turnover rate (TOFNH3) (solids: Ni/Al2O3; hollows: Ni/La-Al2O3)[47]

    图  11  Ni/M-Al-O (M = Mg, Ca, Sr, Ba)催化剂碱性性质与NH3分解的活性关系[44]

    Figure  11.  The relationship between alkaline properties of Ni/M-Al-O (M = Mg, Ca, Sr, Ba) catalyst and NH3 decomposition activity[44]

    图  12  Ni颗粒负载在Al2O3载体上(Ni@Al2O3)有效催化氨分解[50]

    Figure  12.  Ni particles supported onto porous alumina matrix (Ni@Al2O3) used to effectively catalyze ammonia decomposition[50]

    图  13  MgO-CeO2-SrO氧化物载体上修饰的CoNi合金[65]

    Figure  13.  Schematic illustration for the decorated CoNialloy on the oxide support of MgO-CeO2-SrO[65]

    表  1  Fe基催化剂氨分解活性对比

    Table  1.   The comparison of catalytic activity over Fe based catalysts for NH3 decomposition

    Fe loading/wt% Catalyst T/°C GHSV/(mL·gcat−1·h−1) NH3 conv./% H2 formation rate/(mmol·gFe−1·min−1) Ref.
    5 Fe/MWCNTs 600 36000 45 [10]
    2.5 Fe/CNFs 600 18000 38.8 5.2 [11]
    3.5 Fe/CNFs 600 6500 51.3 [12]
    3.5 Fe/CNFs/mica 600 6500 99 [12]
    2.5 Fe2O3/CMK-5 600 7500 97 [13]
    3.4 Fe-CNFs/CMFs 600 12000 100 4.3 [14]
    34 Fe-BTC@400 500 30000 35 11 [15]
    5% Fe/MS-H 700 30000 97 32 [16]
    N-Mg5.3FeOm 680 150000 97.8 9.83 [17]
    16.2 MRM-2-C900@700 700 120000 98.8 121.5 [18]
    RMR-700 700 72000 95 72 [19]
    下载: 导出CSV

    表  2  Co基催化剂氨分解活性对比

    Table  2.   The comparison of catalytic activity over Co based catalysts for NH3 decomposition

    Co loading/wt% Catalyst T/°C GHSV/(mL·gcat−1·h−1) NH3 conv./% H2 formation rate/(mmol·gCo−1·min−1) Ref.
    14.7 ± 0.2 Co15@MC 400 36000 100 [21]
    14.7 ± 0.1 Co15@AC 400 36000 100 [21]
    90CoAl 600 18000 ~ 100 [22]
    5 Co/MWCNTs 500 6000 25 4.0 [23]
    5 Co/CeO2-3DOM 500 6000 62 4.2 [24]
    5 5CoTi-NT 550 6000 19 0.41 [25]
    10 10CoNaTi-NT 500 6000 ~ 18 0.35 [25]
    Co/SiO2 500 30000 13 4.3 [26]
    4.8 Co-BaNH 500 36000 20.0 [27]
    7 Co/Ax-21 500 5200 ~ 60 [28]
    7.7 Co/Al2O3-precipitation 500 22000 ~ 55 156.4 [29]
    5 Co/MgO-La2O3 500 6000 60 4 [30]
    18.7 CoOx@C-700-A 500 15000 ~ 55 8.8 [31]
    CoX (X = Mn, Cr) 500 24000 35 9.4 [32]
    5 5CMLa-2 500 6000 8 0.5 [33]
    下载: 导出CSV

    表  3  Ni基催化剂氨分解活性对比

    Table  3.   The comparison of catalytic activity over Ni based catalysts for NH3 decomposition

    Ni loading/wt% Catalyst T/°C GHSV/(mL·gcat−1·h−1) NH3 conv./% H2 formation rate/(mmol·gNi−1·min−1) Ref.
    5 Ni/rGO 700 81.9 27.4 [34]
    5 Ni/carbon xerogel 600 13000 100 [35]
    11.1 Ni/graphene aerogel 600 30000 70.2 21.6 [36]
    38.6 Ni-50/APT 650 30000 89.9 30.1 [37]
    8.7 Ni-30/ATP@SiO2 650 30000 73.4 24.6 [37]
    Ni/CaNH 500 15000 71 11.8 [38]
    Ni/CaNH-HS 500 15000 91 15.3 [38]
    5 Ni/ZSM-5 650 6000 100 [39]
    23.4 Ni/SBA-15 550 30000 87 24.9 [40]
    10 Ni/Y2O3 550 0.6* ~ 88 [41]
    30 Ni/Al2O3 550 68 [42]
    30 Ni/Y2O3 550 98 [42]
    30 Ni/CeO2 550 93 [42]
    30 Ni/MgO 550 87 [42]
    30 Ni/La2O3 550 84 [42]
    30 Ni/ZrO2 550 72 [42]
    Ni/CeO2-BN 600 30000 77 25.8 [43]
    20 La-Ni/Al2O3 550 6000 92 [44]
    20 Ba-Ni/Al2O3 550 6000 95 [44]
    Ce10-NiO-SiO2-350 650 3000 mL/h 99 33.24 [45]
    * weight/flow (W/F)
    下载: 导出CSV

    表  4  多组分金属催化剂氨分解活性对比

    Table  4.   The comparison of catalytic activity over multi-component-based catalysts for NH3 decomposition

    Metal loading/wt% Catalyst T/°C GHSV/(mL·gcat−1·h−1) NH3 conv./% H2 formation rate/(mmol·gcat−1·min−1) Ref.
    Rh-Pt 550 16000 (1%NH3) 100 [75]
    0.97 Ru-Fe-C 600 20.0 97.5 21.7 [76]
    2.5Ni-0.5Ru Ni-Ru/CeO2 450 ~ 99 [67]
    Ru-Co@N-C 700 12000 ~ 97 [77]
    Cu-Zn/Al2O3 500 0.7* ~ 95 0.7 [78]
    10 6Fe-4Ni 500 14400 28 [60]
    10 Ni5Co5/fumed SiO2 550 30000 76.8 25.7 [63]
    5Co-5Ni Co-Ni/Al2O3 650 30000 90.0 [61]
    5Fe-5Ni Fe-Ni/Al2O3 650 30000 ~ 12 [61]
    5Cu-5Ni Cu-Ni/Al2O3 650 30000 ~ 22 [61]
    5Fe-5Mo Fe5Mo5/YSZ 600 46000 50 [79]
    8.3Fe-1.7Ni Fe-Ni/Al2O3 650 28500 99.8 [62]
    Fused Fe-Co 600 24000 ~ 40 [57]
    Co0.89FeO2.11@mSiO2 600 60000 ~ 88 8 [59]
    5 CoFe5-in-CNTs 600 36000 48 [12]
    5 CoMo/Al2O3 600 36000 99.5 8 [68]
    5 CoMo/MCM-41 600 36000 99 26 [69]
    bulk 3CoMoN 600 6000 98.3 [71]
    CoMoNx/CNT 550 11000 84.4 [72]
    1%Ni, 9%Co Ni1Co9/CZY 350 6000 ~ 12 0.71 [64]
    13.2 4Ni/Ce0.8Zr0.2
    O2-SA
    550 97 3.99 [80]
    1.2%Ni, 0.1%Ce Ni1.2Ce0.1/Al2O3 600 30000 71.9 24.1 [80]
    1.0%−5.0%Ni,
    < 1%Pt
    Ni-Pt/Al2O3 600 6600 78.1 [81]
    2.5Ni-0.5Ru Ni-Ru/CeO2 450 ~ 99 [67]
    10Ni-0.7Ir Ni-Ir/γ-Al2O3 400 9500 43.6 [82]
    4.1%Ni, 6.7%Mo NiMoNy/α-Al2O3 600 3600 78.9 [83]
    68.1La2O3-29.6CeO2 La2O3-CeO2 250 100 [84]
    9.3 HEA-Co55Mo15 500 36000 100 [73]
    60 K-CoNialloy-MgO-CeO2-SrO 500 12000 100 57.75 [65]
    *mmol/(gcat·min)
    下载: 导出CSV

    表  5  等离子体辅助过渡金属基催化剂氨分解活性对比

    Table  5.   Comparison of ammonia decomposition activity of plasma-assisted transition metal-based catalysts

    Metal loading/wt% Catalyst T/°C GHSV/(mL·gcat−1·h−1) NH3 conv./% H2 formation rate/(mmol·gcat−1·min−1) Ref.
    94.4%FeO FeO 410 100 [87]
    10 Fe/SiO2 450 71.7 2.2 [88]
    10 Ni/SiO2 450 86.3 2.7 [88]
    10 Co/SiO2 450 99.2 3 [88]
    10 6Fe-4Ni 500 14400 99.9 16 [60]
    10 9Fe-1Ni 460 14400 49.4 8 [60]
    10 7Fe-3Ni 460 14400 55.0 8.8 [60]
    10 5Fe-5Ni 460 14400 59.6 9.5 [60]
    10 2Fe-8Ni 460 14400 46.0 7.3 [60]
    5 FeCo/CeO2-S 500 36000 73 29.3 [58]
    5 FeNi/CeO2-S 500 36000 64 25.7 [58]
    5 CoNi/CeO2-S 500 36000 51 20.5 [58]
    30 Co/fumed SiO2 450 ~ 97 [89]
    ammol/(gcat·h)
    下载: 导出CSV
  • [1] Liu HF, Ampah JD, Afrane S. Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system. Renewable and Sustainable Energy Reviews, 2023, 184: 113578 doi: 10.1016/j.rser.2023.113578
    [2] Liu HF, Ampah JD, Zhao Y. A perspective on the overarching role of hydrogen, ammonia, and methanol carbon-neutral fuels towards net zero emission in the next three decades. Energies, 2022, 16: 280 doi: 10.3390/en16010280
    [3] 刘海峰, 宋腾达, 黄志雄等. 氨/柴油燃烧模型构建及低速机性能优化. 内燃机学报, 2023, 41: 5 (Liu Haifeng, Song Tengda, Huang Zhixiong, et al. Simulation on chemical kinetic mechanism and performance optimization of ammonia-diesel dual fuel low-speed engine. Transactions of CSICE, 2023, 41: 5 (in Chinese)

    Liu Haifeng, Song Tengda, Huang Zhixiong, et al. Simulation on chemical kinetic mechanism and performance optimization of ammonia-diesel dual fuel low-speed engine. Transactions of CSICE, 2023, 41: 5 (in Chinese)
    [4] Net Zero by 2050. A Roadmap for the Global Energy Sector. International Energy Agency, 2021
    [5] Wu HB, Sutton JE, Guo W, et al. Volcano curves for in silico prediction of mono- and bifunctional catalysts: Application to ammonia decomposition. The Journal of Physical Chemistry C, 2019, 123: 27097-27104
    [6] Fang HH, Liu D, Luo Y, et al. Challenges and opportunities of ru-based catalysts toward the synthesis and utilization of ammonia. ACS Catalysis, 2022, 12: 3938-3954 doi: 10.1021/acscatal.2c00090
    [7] Boisen A, Dahl S, Norskov J, et al. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. Journal of Catalysis, 2005, 230: 309-312 doi: 10.1016/j.jcat.2004.12.013
    [8] Ganley JC, Thomas FS, Seebauer EG, et al. A Priori catalytic activity correlations: The difficult case of hydrogen production from ammonia, Catalysis Letters, 2004, 96: 117-122
    [9] Dasireddy VDBC, Likozar B. COx-free hydrogen generation via decomposition of ammonia over copper and zinc-based catalysts. Fuel, 2004, 196: 325-335
    [10] Ji J, Duan XZ, Qian G, et al. Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition. Catalysis Today, 2013, 216: 254-260 doi: 10.1016/j.cattod.2013.06.008
    [11] Yeo SC, Han SS, Lee HM, et al. Mechanistic investigation of the catalytic decomposition of ammonia (NH3) on an Fe(100) surface: A DFT study. The Journal of Physical Chemistry C, 2014, 118: 5309-5316 doi: 10.1021/jp410947d
    [12] Zhang J, Müller JO, Zheng W, et al. Individual Fe−Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Letters, 2008, 8: 2738-2743
    [13] Ji J, Yan X, Qian G, et al. Morphology and location manipulation of Fe nanoparticles on carbon nanofibers as catalysts for ammonia decomposition to generate hydrogen. International Journal of Hydrogen Energy, 2017, 42: 17466-17475 doi: 10.1016/j.ijhydene.2017.04.037
    [14] Duan XZ, Qian G, Zhou XG, et al. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Applied Catalysis B: Environmental, 2011, 101: 189-196 doi: 10.1016/j.apcatb.2010.09.017
    [15] Lu AH, Nitz JJ, Comotti M, et al. Spatially and size selective synthesis of fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition. Journal of the American Chemical Society, 2010, 132: 14152-14162 doi: 10.1021/ja105308e
    [16] Akarçay Ö. Kurtoğlu SF, Uzun A, et al. Ammonia decomposition on a highly-dispersed carbon-embedded iron catalyst derived from Fe-BTC: Stable and high performance at relatively low temperatures. International Journal of Hydrogen Energy, 2020, 45: 28664-28681
    [17] Hu ZP, Weng CC, Chen C, et al. Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Molecular Catalysis, 2018, 448: 162-170 doi: 10.1016/j.mcat.2018.01.038
    [18] Su Q, Wang H, Gu L, et al. Fe-based catalyst derived from MgFe-LDH: Very efficient yet simply obtainable for hydrogen production via ammonia decomposition. International Journal of Hydrogen Energy, 2021, 46: 31122-31132 doi: 10.1016/j.ijhydene.2021.07.020
    [19] Kurtoğlu SF, Soyer-Uzun S. Modifying the structure of red mud by simple treatments for high and stable performance in COx-free hydrogen production from ammonia. International Journal of Hydrogen Energy, 2018, 43: 20525-20537 doi: 10.1016/j.ijhydene.2018.09.032
    [20] Kurtoglu SF, Uzun A. Red mud as an efficient, stable, and cost-Free catalyst for COx-Free hydrogen production from ammonia. Scientific Reports, 2016, 6: 32279
    [21] Can Seyfeli R, Varisli D. Ammonia decomposition reaction to produce COx-free hydrogen using carbon supported cobalt catalysts in microwave heated reactor system. International Journal of Hydrogen Energy, 2020, 45: 34867-34878 doi: 10.1016/j.ijhydene.2020.01.124
    [22] Gu YQ, Fu XP, Du PP, et al. In situ X-ray diffraction study of Co–Al nanocomposites as catalysts for ammonia decomposition. The Journal of Physical Chemistry C, 2015, 119: 17102-17110
    [23] Zhang H, Alhamed YA, Al-Zahrani A, et al. Tuning catalytic performances of cobalt catalysts for clean hydrogen generation via variation of the type of carbon support and catalyst post-treatment temperature. International Journal of Hydrogen Energy, 2014, 39: 17573-17582 doi: 10.1016/j.ijhydene.2014.07.183
    [24] Huang CQ, Y. YZ, Tang XY, et al. Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: Influence of support morphologies. Applied Surface Science, 2020, 532: 147335
    [25] Lara-García HA, Mendoza-Nieto JA, Pfeiffer H, et al. COx-free hydrogen production from ammonia on novel cobalt catalysts supported on 1D titanate nanotubes. International Journal of Hydrogen Energy, 2019, 44: 30062-30074 doi: 10.1016/j.ijhydene.2019.09.120
    [26] Yao LH, Li YX, Zhao J, et al. Core–shell structured nanoparticles (M@SiO2, Al2O3, MgO; M = Fe, Co, Ni, Ru) and their application in COx-free H2 production via NH3 decomposition. Catalysis Today, 2010, 158: 401-408 doi: 10.1016/j.cattod.2010.05.009
    [27] Yu P, Wu H, Guo J, et al. Effect of BaNH, CaNH, Mg3N2 on the activity of Co in NH3 decomposition catalysis. Journal of Energy Chemistry, 2020, 46: 16-21 doi: 10.1016/j.jechem.2019.10.014
    [28] Torrente-Murciano L, Hill AK, Bell TE, et al. Ammonia decomposition over cobalt/carbon catalysts—effect of carbon support and electron donating promoter on activity. Catalysis Today, 2017, 286: 131-140 doi: 10.1016/j.cattod.2016.05.041
    [29] Bell TE, Ménard H, González Carballo JM, et al. Hydrogen production from ammonia decomposition using Co/γ-Al2O3 catalysts—insights into the effect of synthetic method. International Journal of Hydrogen Energy, 2020, 45: 27210-27220 doi: 10.1016/j.ijhydene.2020.07.090
    [30] Podila S, Driss H, Zaman SF, et al. Hydrogen generation by ammonia decomposition using Co/MgO–La2O3 catalyst: Influence of support calcination atmosphere. Journal of Molecular Catalysis A: Chemical, 2016, 414: 130-139 doi: 10.1016/j.molcata.2016.01.012
    [31] Li L, Jiang R, Chu W, et al. Cobalt nanoparticles embedded in a porous carbon matrix as an efficient catalyst for ammonia decomposition. Catalysis Science & Technology, 2017, 7: 1363-1371
    [32] Lendzion-Bielun Z, Narkiewicz U, Arabczyk W, et al. Cobalt-based catalysts for ammonia decomposition. Materials (Basel), 2013, 6: 2400-2409 doi: 10.3390/ma6062400
    [33] Podila S, Alhamed YA, AlZahrani AA, et al. Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems. International Journal of Hydrogen Energy, 2015, 40: 15411-15422 doi: 10.1016/j.ijhydene.2015.09.057
    [34] Meng T, Xu QQ, Li YT, et al. Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen. Journal of Industrial and Engineering Chemistry, 2015, 32: 373-379 doi: 10.1016/j.jiec.2015.09.017
    [35] Bramwell PL, Lentink S, Ngene P, et al. Effect of pore confinement of LiNH2 on ammonia decomposition catalysis and the storage of hydrogen and ammonia. The Journal of Physical Chemistry C, 2016, 120: 27212-27220 doi: 10.1021/acs.jpcc.6b10688
    [36] Kocer T, Saraç-Öztuna FE, Kurtoğlu-Öztulum SF, et al. Effect of nickel precursor on the catalytic performance of graphene aerogel‐supported nickel nanoparticles for the production of COx‐free hydrogen by ammonia decomposition. Energy Technology, 2022, 10: 2100794 doi: 10.1002/ente.202100794
    [37] Li L, Chen F, Shao JL, et al. Attapulgite clay supported Ni nanoparticles encapsulated by porous silica: Thermally stable catalysts for ammonia decomposition to COx free hydrogen. International Journal of Hydrogen Energy, 2016, 41: 21157-21165 doi: 10.1016/j.ijhydene.2016.08.156
    [38] Ogasawara K, Nakao T, Kishida K, et al. Ammonia decomposition over CaNH-supported Ni catalysts via an NH2–-vacancy-mediated mars–van Krevelen mechanism. ACS Catalysis, 2021, 11: 11005-11015 doi: 10.1021/acscatal.1c01934
    [39] Wan Z, Tao Y, You H, et al. Facile synthesis of a sintering-resistant zeolite confined Ni catalyst for efficient COx-free hydrogen generation from ammonia decomposition. Sustainable Energy & Fuels, 2021, 5: 3182-3190
    [40] Liu H, Wang H, Shen J, et al. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Applied Catalysis A: General, 2008, 337: 138-147 doi: 10.1016/j.apcata.2007.12.006
    [41] Okura K, Okanishi T, Muroyama H, et al. Ammonia decomposition over nickel catalysts supported on rare-earth oxides for the on-site generation of hydrogen. ChemCatChem, 2016, 8: 2988-2995 doi: 10.1002/cctc.201600610
    [42] Nakamura I, Fujitani T. Role of metal oxide supports in NH3 decomposition over Ni catalysts. Applied Catalysis A: General, 2016, 524: 45-49 doi: 10.1016/j.apcata.2016.05.020
    [43] Zhou C, Wu K, Huang H, et al. Spatial confinement of electron-rich Ni nanoparticles for efficient ammonia decomposition to hydrogen production. ACS Catalysis, 2021, 11: 10345-10350 doi: 10.1021/acscatal.1c02420
    [44] Im Y, Muroyama H, Matsui T, et al. Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. International Journal of Hydrogen Energy, 2020, 45: 26979-26988 doi: 10.1016/j.ijhydene.2020.07.014
    [45] Zhang LF, Li M, Ren TZ, et al. Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition. International Journal of Hydrogen Energy, 2015, 40: 2648-2656 doi: 10.1016/j.ijhydene.2014.12.079
    [46] Takahashi A, Fujitani T. Kinetic analysis of decomposition of ammonia over nickel and ruthenium catalysts. Journal of Chemical Engineering of Japan, 2016, 49: 22-28 doi: 10.1252/jcej.14we431
    [47] Zhang J, Xu HY, Li WZ. Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Applied Catalysis A: General, 2005, 296: 257-267 doi: 10.1016/j.apcata.2005.08.046
    [48] Chen SJ, Chen X, Zhang H. Nanoscale size effect of octahedral nickel catalyst towards ammonia decomposition reaction. International Journal of Hydrogen Energy, 2017, 42: 17122-17128 doi: 10.1016/j.ijhydene.2017.05.196
    [49] Henpraserttae S, Charojrochkul S, Klysubun W, et al. Reduced temperature ammonia decomposition using Ni/Zr-Doped Al2O3 catalyst. Catalysis Letters, 2018, 148: 1775-1783 doi: 10.1007/s10562-018-2381-9
    [50] Gu YQ, Ma Y, Long Z, et al. One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. International Journal of Hydrogen Energy, 2016, 46: 4045-4054
    [51] Okura K, Okanishi T, Muroyama H, et al. Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst. Applied Catalysis A: General, 2015, 505: 77-85 doi: 10.1016/j.apcata.2015.07.020
    [52] Sima D, Wu H, Tian K, et al. Enhanced low temperature catalytic activity of Ni/Al–Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. International Journal of Hydrogen Energy, 2020, 45: 9342-9352
    [53] Wu K, Cao CF, Zhou C, et al. Engineering of Ce3+-O-Ni structures enriched with oxygen vacancies via Zr doping for effective generation of hydrogen from ammonia. Chemical Engineering Science, 2021, 245: 116818 doi: 10.1016/j.ces.2021.116818
    [54] Chen C, Fan X, Zhou C, et al. Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology. Journal of Rare Earths, 2022, 41: 1014-1021
    [55] Okura K, Okanishi T, Muroyama H, et al. Additive effect of alkaline earth metals on ammonia decomposition reaction over Ni/Y2O3 catalysts. RSC Advances, 2016, 6: 85142-85148 doi: 10.1039/C6RA19005G
    [56] Yu Y, Gan YM, Huang C, et al. Ni/La2O3 and Ni/MgO–La2O3 catalysts for the decomposition of NH3 into hydrogen. International Journal of Hydrogen Energy, 2020, 45: 16528-16539 doi: 10.1016/j.ijhydene.2020.04.127
    [57] Lendzion-Bieluń Z, Arabczyk W. Fused FeCo catalysts for hydrogen production by means of the ammonia decomposition reaction. Catalysis Today, 2013, 212: 215-219 doi: 10.1016/j.cattod.2012.12.014
    [58] Gao YB, Hu EJ, Yi Y, et al. Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping. Fuel Processing Technology, 2023, 244: 107695 doi: 10.1016/j.fuproc.2023.107695
    [59] Huo LL, Liu BC, Li HH, et al. Component synergy and armor protection induced superior catalytic activity and stability of ultrathin Co-Fe spinel nanosheets confined in mesoporous silica shells for ammonia decomposition reaction. Applied Catalysis B: Environmental, 2019, 253: 121-130 doi: 10.1016/j.apcatb.2019.04.053
    [60] Yi YH, Wang L, Guo YJ, et al. Plasma-assisted ammonia decomposition over Fe–Ni alloy catalysts for COx-Free hydrogen. AIChE Journal, 2019, 65: 691-701 doi: 10.1002/aic.16479
    [61] Fu EK, Qiu Y, Lu HC, et al. Enhanced NH3 decomposition for H2 production over bimetallic M(M = Co, Fe, Cu)Ni/Al2O3. Fuel Processing Technology, 2021, 221: 106945
    [62] Silva H, Nielsen MG, Fiordaliso EM, et al. Synthesis and characterization of Fe–Ni/ɣ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition. Applied Catalysis A: General, 2015, 505: 548-556 doi: 10.1016/j.apcata.2015.07.016
    [63] Wu ZW, Li X, Qin YH, et al. Ammonia decomposition over SiO2-supported Ni–Co bimetallic catalyst for COx-free hydrogen generation. International Journal of Hydrogen Energy, 2020, 45: 15263-15269 doi: 10.1016/j.ijhydene.2020.04.007
    [64] Huang CQ, Li HX, Yang JM, et al. Ce0.6Zr0.3Y0.1O2 solid solutions-supported Ni-Co bimetal nanocatalysts for NH3 decomposition. Applied Surface Science, 2019, 478: 708-716
    [65] Tabassum H, Mukherjee S, Chen J, et al. Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy & Environmental Science, 2022, 15: 4190-4200
    [66] Kurtoğlu SF, Sarp S, Akkaya CY, et al. COx-free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts. International Journal of Hydrogen Energy, 2018, 43: 9954-9968 doi: 10.1016/j.ijhydene.2018.04.057
    [67] Lucentini I, Colli GG, Luzi CD, et al. Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: Effect of metal loading and kinetic analysis. Applied Catalysis B: Environmental, 2021, 286: 119896 doi: 10.1016/j.apcatb.2021.119896
    [68] Ji J, Duan XZ, Qian G, et al. Towards an efficient CoMo/γ-Al2O3 catalyst using metal amine metallate as an active phase precursor: Enhanced hydrogen production by ammonia decomposition. International Journal of Hydrogen Energy, 2014, 39: 12490-12498 doi: 10.1016/j.ijhydene.2014.06.081
    [69] Duan XZ, Qian G, Zhou XG, et al. MCM-41 supported Co Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chemical Engineering Journal, 2012, 207-208: 103-108 doi: 10.1016/j.cej.2012.05.100
    [70] Srifa A, Okura K, Okanishi T, et al. Hydrogen production by ammonia decomposition over Cs-modified Co3Mo3N catalysts. Applied Catalysis B: Environmental, 2017, 218: 1-8 doi: 10.1016/j.apcatb.2017.06.034
    [71] Podila S, Zaman SF, Driss H, et al. Hydrogen production by ammonia decomposition using high surface area Mo2N and Co3Mo3N catalysts. Catalysis Science & Technology, 2016, 6: 1496-1506
    [72] Zhao ZH, Zou HB, Lin WM, et al. Effect of supports on the properties of Co-Mo nitride catalysts for ammonia decomposition. Advanced Materials Research, 2012, 391-392: 1215-1219
    [73] Xie PF, Yao YG, Huang ZN, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature Communications, 2019, 10: 4011 doi: 10.1038/s41467-019-11848-9
    [74] Wang CP, Wang J, Guo SH, et al. Experimental investigation and thermodynamic calculation of the phase equilibria in the Co–Mo–W system. Intermetallics, 2009, 17: 642-650 doi: 10.1016/j.intermet.2009.02.004
    [75] Sittichompoo S, Nozari H, Herreros JM, et al. Exhaust energy recovery via catalytic ammonia decomposition to hydrogen for low carbon clean vehicles. Fuel, 2021, 285: 119111 doi: 10.1016/j.fuel.2020.119111
    [76] Li L, Chen F, Dai Y, et al. Fe-assisted Ru clusters supported on porous and graphitic carbon for ammonia decomposition to COx free hydrogen. RSC Advances, 2016, 6: 102336-102342 doi: 10.1039/C6RA21211E
    [77] Yang J, He DS, Chen WX, et al. Bimetallic Ru-Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Applied Materials & Interfaces, 2017, 9: 39450-39455
    [78] Hajduk Š, Dasireddy VDBC, Likozar B, et al. COx-free hydrogen production via decomposition of ammonia over Cu–Zn-based heterogeneous catalysts and their activity/stability. Applied Catalysis B: Environmental, 2017, 211: 57-67 doi: 10.1016/j.apcatb.2017.04.031
    [79] Lorenzut B, Montini T, Bevilacqua M, et al. FeMo-based catalysts for H2 production by NH3 decomposition. Applied Catalysis B: Environmental, 2012, 125: 409-417 doi: 10.1016/j.apcatb.2012.06.011
    [80] Deng QF, Zhang H, Hou XX, et al. High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen. International Journal of Hydrogen Energy, 2012, 37: 15901-15907
    [81] Chellappa AS, Fischer CM, Thomson WJ, et al. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Applied Catalysis A: General, 2002, 227: 231-240 doi: 10.1016/S0926-860X(01)00941-3
    [82] Han X, Chu W, Ni P, et al. Promoting effects of iridium on nickel based catalyst in ammonia decomposition. Journal of Fuel Chemistry and Technology, 2007, 35: 691-695 doi: 10.1016/S1872-5813(08)60004-3
    [83] Liang C, Li W, Wei Z, et al. Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 catalysts. Industrial and Engineering Chemistry Research, 2000, 39: 3694-3697 doi: 10.1021/ie990931n
    [84] Yu BS, Jiang JL, Yang CC. Conversion of lanthanum and cerium recovered from hazardous waste polishing powders to hazardous ammonia decomposition catalysts. Journal of Hazardous Materials, 2019, 379: 120773 doi: 10.1016/j.jhazmat.2019.120773
    [85] Jiang K, Li K, Liu YQ, et al. Nickel-cobalt nitride nanoneedle supported on nickel foam as an efficient electrocatalyst for hydrogen generation from ammonia electrolysis, Electrochimica Acta, 2022, 403: 139700
    [86] Wang XC, Zhang ZJ, Zhou GZ, et al. Synergistic effect between electric field and Ce-doped catalysts to promote hydrogen production from ammonia decomposition. Fuel, 2023, 351: 128796 doi: 10.1016/j.fuel.2023.128796
    [87] Wang L, Zhao Y, Liu CY, et al. Plasma driven ammonia decomposition on a Fe-catalyst: Eliminating surface nitrogen poisoning. Chem Commun (Camb), 2013, 49: 3787-3789 doi: 10.1039/c3cc41301b
    [88] Wang L, Yi YH, Zhao Y, et al. NH3 Decomposition for H2 generation: Effects of cheap metals and supports on plasma–catalyst synergy. ACS Catalysis, 2015, 5: 4167-4174 doi: 10.1021/acscatal.5b00728
    [89] Wang L, Yi YH, Guo HC, et al. Highly dispersed Co nanoparticles prepared by an improved method for plasma-driven NH3 decomposition to produce H2. Catalysts, 2019, 9: 107 doi: 10.3390/catal9020107
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  46
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-03
  • 录用日期:  2023-11-13
  • 网络出版日期:  2023-11-14

目录

    /

    返回文章
    返回