RECONSTRUCTION HARMONIC BALANCE METHOD AND ITS APPLICATION IN SOLVING COMPLEX NONLINEAR DYNAMICAL SYSTEMS
-
摘要: 谐波平衡法是求解非线性动力学系统周期解的最常用方法, 但对非线性项进行高阶近似需要庞杂的公式推导, 限制了该方法的超高精度解算. 通过对频域非线性量的时域等价重构, 提出了重构谐波平衡法(RHB法), 解决了经典谐波平衡法超高阶次计算难题. 然而, 上述两种方法均要求动力学系统为多项式型非线性, 且无法直接用来求解非线性系统的拟周期解. 针对上述问题, 文章提出一种将RHB法和复杂非线性系统等价重铸法相结合的计算方法, 首先将一般非线性问题无损重铸为多项式型非线性系统, 然后用RHB法进行高精度求解; 针对拟周期响应求解问题, 提出基于“补频”思想的RHB方法, 通过基频的优化筛选, 实现拟周期响应的快速精准捕捉. 选取非线性单摆、相对论谐振子和非线性耦合非对称摆等典型系统进行仿真计算, 仿真结果表明, 所提出的RHB-重铸法在解非多项式型非线性系统的稳态响应时精度保持为${10^{ - 12}}$量级, 达计算机精度, 远超现有方法水平. 补频RHB法则实现了对拟周期问题的高效解算, 拓宽了方法对真实物理响应的求解范围.
-
关键词:
- 非多项式型非线性系统 /
- 重构谐波平衡法 /
- 微分方程重铸 /
- 非线性单摆 /
- 拟周期响应
Abstract: The harmonic balance method is the most commonly used method for solving periodic solutions of nonlinear dynamic systems, but the high-order approximation of nonlinear terms requires sophisticated formula derivations, which limits its ultra-high accuracy computation. The authors' team proposed the reconstruction harmonic balance (RHB) method through the equivalent reconstruction of the frequency domain nonlinear quantity in the time domain, which successfully conquered the problem of ultra-high-order calculation of the classical harmonic balance method. However, both two methods require the dynamical system to be polynomial nonlinear, and cannot be directly used to solve the quasi-periodic solution of the nonlinear system. In view of the above problems, this paper proposes a novel method that combines the RHB method and the recast technique for complex nonlinear systems. First, the general nonlinear problem is non-destructively recast into a polynomial nonlinear system, and then the RHB method is used for high-precision solutions. Aiming at computing the quasi-periodic response, which is hard to obtain relatively accurate results by considering only one base frequency, the RHB method based on the idea of "supplemental frequency" is derived. By optimizing and selecting base frequencies, the fast and accurate capture of quasi-periodic response is achieved in this paper. The typical systems such as the nonlinear pendulum, and the nonlinear coupling asymmetric pendulum are selected for simulation and algorithm verification. Simulation results show that the accuracy of the proposed RHB-recast method achieves an accuracy up to 10−12 when solving the non-polynomial type nonlinear systems, reaching the computer round-off-error accuracy, far exceeding the state-of-the-art methods. The supplemental frequency RHB method has been shown to produce efficient solutions for quasi-periodic problems, expanding the scope of the RHB-like methods for solving complex physical responses. -
表 1 RHB法与HDHB法在分岔处的解分布
Table 1. Statistical distribution of solution by the RHB and the HDHB method at bifurcation point
Method Upper
branch/%Lower
branch/%Unstable
branch/%Non-physical/% RHB 57.13 19.71 23.16 0 HDHB 29.14 14.21 15.96 48.69 表 2 各阶RHB-重铸法求解相对论谐振子
Table 2. Solving relativistic harmonic oscillator by the RHB-recast method with different orders
Order of method Amplitude error Computing time/s 25 $4.36 \times {10^{ - 7}}$ 0.73 35 $1.95 \times {10^{ - 9}}$ 0.77 55 $3.87 \times {10^{ - 12}}$ 1.07 表 3 3种方法计算非线性单摆结果对比
Table 3. Comparison of corresponding results of three methods for solving nonlinear pendulum
Methods $M$ Average error Computing time/s RHB-recast 76 1.9 × 10−12 0.70 RHB-Taylor 401 8.9 × 10−10 1.82 HB-AFT 210 1.5 × 10−9 0.69 A1 常见初等超越函数的重铸
A1. Recast form of the most common elementary transcendental functions
Original function Differential relationship Companion variable Recast equation $u\left( t \right) = \exp {x\left( t \right)}$ $\dot u\left( t \right) = \dot x\left( t \right) \cdot u\left( t \right)$ $\dot u\left( t \right) = \dot x\left( t \right) \cdot u\left( t \right)$ $u\left( t \right) = {\log _a} {x\left( t \right)} $ $\dot u\left( t \right) = {{\dot x\left( t \right)} \mathord{\left/ {\vphantom {{\dot x\left( t \right)} {\left( {x\left( t \right) \cdot \ln a} \right)}}} \right. } {\left( {x\left( t \right) \cdot \ln a} \right)}}$ $ v\left( t \right) = {1 \mathord{\left/ {\vphantom {1 {x\left( t \right)}}} \right. } {x\left( t \right)}} $ $\left. \begin{aligned}& {\dot u\left( t \right) = {{\left( {v\left( t \right) \cdot \dot x\left( t \right)} \right)} / {\ln a}}} \\ & {x\left( t \right)v\left( t \right) - 1 = 0} \end{aligned}\right\}$ $\left. \begin{aligned}& {u\left( t \right) = \sin {x\left( t \right)} } \\ & {v\left( t \right) = \cos {x\left( t \right)} } \end{aligned} \right\}$ $\left.\begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right) \cdot \cos {x\left( t \right)}} \\ & {\dot v\left( t \right) = - \dot x\left( t \right) \cdot \sin {x\left( t \right)} } \end{aligned} \right\}$ $\left. \begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right) \cdot v\left( t \right)} \\ & {\dot v\left( t \right) = - \dot x\left( t \right) \cdot u\left( t \right)} \end{aligned}\right\}$ $u\left( t \right) = \tan {x\left( t \right)} $ $\dot u\left( t \right) = \dot x\left( t \right) \cdot \left( {1 + {u^2}\left( t \right)} \right)$ $\dot u\left( t \right) = \dot x\left( t \right) + \dot x\left( t \right) \cdot {u^2}\left( t \right)$ $u\left( t \right) = {\text{arc}}\sin {x\left( t \right)} $ $\dot u\left( t \right) = {{\dot x\left( t \right)} \mathord{\left/ {\vphantom {{\dot x\left( t \right)} {\sqrt {1 - {x^2}\left( t \right)} }}} \right. } {\sqrt {1 - {x^2}\left( t \right)} }}$ $\left. \begin{aligned}& {v\left( t \right) = \sqrt {1 - {x^2}\left( t \right)} } \\ & {w\left( t \right) = {1 / {v\left( t \right)}}} \end{aligned} \right\}$ $\left. \begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right)w\left( t \right)} \\ & {w\left( t \right)v\left( t \right) - 1 = 0} \\ & {{v^2}\left( t \right) + {x^2}\left( t \right) - 1 = 0} \end{aligned} \right\}$ $u\left( t \right) = {\text{arccos}} {x\left( t \right)} $ $\dot u\left( t \right) = {{ - \dot x\left( t \right)} \mathord{\left/ {\vphantom {{ - \dot x\left( t \right)} {\sqrt {1 - {x^2}\left( t \right)} }}} \right. } {\sqrt {1 - {x^2}\left( t \right)} }}$ $\left.\begin{aligned}& {v\left( t \right) = \sqrt {1 - {x^2}\left( t \right)} } \\ & {w\left( t \right) = - {1 / {v\left( t \right)}}} \end{aligned} \right\}$ $\left. \begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right)w\left( t \right)} \\ & {w\left( t \right)v\left( t \right) + 1 = 0} \\ & {{v^2}\left( t \right) + {x^2}\left( t \right) - 1 = 0} \end{aligned} \right\}$ $u\left( t \right) = {\text{arctan}}{x\left( t \right)} $ $\dot u\left( t \right) = {{\dot x\left( t \right)} \mathord{\left/ {\vphantom {{\dot x\left( t \right)} {\left( {1 + {x^2}\left( t \right)} \right)}}} \right. } {\left( {1 + {x^2}\left( t \right)} \right)}}$ $\left. \begin{aligned}& {v\left( t \right) = 1 + {x^2}\left( t \right)} \\ & {w\left( t \right) = {1 / {v\left( t \right)}}} \end{aligned}\right\}$ $\left.\begin{aligned}& {\dot u\left( t \right) = \dot x\left( t \right)w\left( t \right)} \\ & {w\left( t \right)v\left( t \right) - 1 = 0} \\ & {v\left( t \right) - {x^2}\left( t \right) - 1 = 0} \end{aligned} \right\}$ -
[1] 代洪华, 岳晓奎, 汪雪川. 非线性动力学系统高性能计算方法. 北京: 科学出版社, 2022 (Dai Honghua, Yue Xiaokui, Wang Xuechuan. High-performance Computing Method for Solving Nonlinear Dynamical Systems. Beijing: Science Publishing & Media, 2022 (in Chinese)Dai Honghua, Yue Xiaokui, Wang Xuechuan. High-performance Computing Method for Solving Nonlinear Dynamical Systems. Beijing: Science Publishing & Media, 2022 (in Chinese) [2] Yan ZP, Dai HH, Wang QS, et al. Harmonic balance methods: A review and recent developments. CMES-Computer Modeling in Engineering & Sciences, 2023, 137(2): 1419-1459 [3] Hall KC, Thomas JP, Clark WS. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal, 2002, 40(5): 879-886 doi: 10.2514/2.1754 [4] Liu LP, Thomas JP, Dowell EH, et al. A comparison of classical and high dimensional harmonic balance approaches for a Duffing oscillator. Journal of Computational Physics, 2006, 215(1): 298-320 doi: 10.1016/j.jcp.2005.10.026 [5] LaBryer A, Attar PJ. High dimensional harmonic balance de-aliasing techniques for a Duffing oscillator. Journal of Sound and Vibration, 2009, 324(3-5): 1016-1038 doi: 10.1016/j.jsv.2009.03.005 [6] Dai HH, Yan ZP, Wang XC, et al. Collocation-based harmonic balance framework for highly accurate periodic solution of nonlinear dynamical system. International Journal for Numerical Methods in Engineering, 2023, 124(2): 458-481 doi: 10.1002/nme.7128 [7] Chen Y, Hou L, Chen G, et al. Nonlinear dynamics analysis of a dual-rotor-bearing-casing system based on a modified HB-AFT method. Mechanical Systems and Signal Processing, 2023, 185: 109805 [8] Chen YM, Liu JK, Meng G. An incremental method for limit cycle oscillations of an airfoil with an external store. International Journal of Non-Linear Mechanics, 2012, 47(3): 75-83 doi: 10.1016/j.ijnonlinmec.2011.12.006 [9] Beléndez A, Hernández A, Márquez A, et al. Analytical approximations for the period of a nonlinear pendulum. European Journal of Physics, 2006, 27(3): 539-551 doi: 10.1088/0143-0807/27/3/008 [10] Cameron TM, Griffin JH. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. Journal of Applied Mechanics, 1989, 56(1): 149-154 doi: 10.1115/1.3176036 [11] Krack M, Gross J. Harmonic Balance for Nonlinear Vibration Problems. Cham: Springer International Publishing, 2019: 53-55 [12] Cochelin B, Vergez C. A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. Journal of Sound and Vibration, 2009, 324(1-2): 243-262 doi: 10.1016/j.jsv.2009.01.054 [13] Karkar S, Cochelin B, Vergez C. A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities. Journal of Sound and Vibration, 2013, 332(4): 968-977 doi: 10.1016/j.jsv.2012.09.033 [14] Guillot L, Cochelin B, Vergez C. A generic and efficient Taylor series–based continuation method using a quadratic recast of smooth nonlinear systems. International Journal for Numerical Methods in Engineering, 2019, 119(4): 261-280 doi: 10.1002/nme.6049 [15] Liu G, Lv ZR, Liu JK, et al. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. International Journal of Non-Linear Mechanics, 2018, 100: 10-19 doi: 10.1016/j.ijnonlinmec.2018.01.004 [16] Huang JL, Zhu WD. A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. Journal of Vibration and Acoustics, 2017, 139(2): 021010 [17] Li H, Ekici K. Supplemental-frequency harmonic balance: A new approach for modeling aperiodic aerodynamic response. Journal of Computational Physics, 2021, 436: 110278 [18] 龚冰清, 郑泽昌, 陈衍茂等. 准周期响应对称破缺分岔点的一种快速计算方法. 力学学报, 2022, 54(11): 3138-3188 (Gong Bingqing, Zheng Zechang, Chen Yanmao, et al. A fast calculation for the symmetry breaking point of quasi-periodic responses. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3138-3188 (in Chinese) Gong Bingqing, Zheng Zechang, Chen Yanmao, et al . A fast calculation for the symmetry breaking point of quasi-periodic responses. Chinese Journal of Theoretical and Applied Mechanics,2022 ,54 (11 ):3138 -3188 (in Chinese)[19] Chua L, Ushida A. Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies. IEEE Transactions on Circuits and Systems, 1981, 28(10): 953-971 doi: 10.1109/TCS.1981.1084921 [20] Ju R, Fan W, Zhu WD, et al. A modified two-timescale incremental harmonic balance method for steady-state quasi-periodic responses of nonlinear systems. Journal of Computational and Nonlinear Dynamics, 2017, 12(5): 051007 [21] Kim YB, Choi SK. A multiple harmonic balance method for the internal resonant vibration of a non-linear Jeffcott rotor. Journal of Sound and Vibration, 1997, 208(5): 745-761 doi: 10.1006/jsvi.1997.1221 [22] Liu L, Dowell E H, Hall K C. A novel harmonic balance analysis for the Van Der Pol oscillator. International Journal of Non-Linear Mechanics, 2007, 42(1): 2-12 doi: 10.1016/j.ijnonlinmec.2006.09.004 [23] Wang QS, Yan ZP, Dai HH. An efficient multiple harmonic balance method for computing quasi-periodic responses of nonlinear systems. Journal of Sound and Vibration, 2023, 554: 117700 [24] Hall KC, Ekici K, Thomas JP, et al. Harmonic balance methods applied to computational fluid dynamics problems. International Journal of Computational Fluid Dynamics, 2013, 27(2): 52-67 doi: 10.1080/10618562.2012.742512 [25] Dai HH, Schnoor M, Atluri SN. A simple collocation scheme for obtaining the periodic solutions of the duffing equation, and its equivalence to the high dimensional harmonic balance method: subharmonic oscillations. CMES-Computer Modeling in Engineering & Sciences, 2012, 84(5): 459-498 [26] Moreau W, Easther R, Neutze R. Relativistic (an) harmonic oscillator. American Journal of Physics, 1994, 62(6): 531-535 doi: 10.1119/1.17513 [27] Biazar J, Hosami M. An easy trick to a periodic solution of relativistic harmonic oscillator. Journal of the Egyptian Mathematical Society, 2014, 22(1): 45-49 doi: 10.1016/j.joems.2013.04.013 [28] 孟艳平, 孙维鹏, 张皆杰. 相对论谐振子解析逼近解的构造. 吉林大学学报(理学版), 2013, 51(1): 83-88 (Meng Yanping, Sun Weipeng, Zhang Jiejie. Construction of analytical approximate solutions to relativistic harmonic oscillators. Journal of Jilin University (Science Edition), 2013, 51(1): 45-49 (in Chinese)Meng Yanping, Sun Weipeng, Zhang Jiejie. Construction of analytical approximate solutions to relativistic harmonic oscillators. Journal of Jilin University (Science Edition), 2013, 51(1): 45-49 (in Chinese) [29] Mickens RE. Periodic solutions of the relativistic harmonic oscillator. Journal of Sound and Vibration, 1998, 212(5): 905-908 doi: 10.1006/jsvi.1997.1453 [30] Beléndez A, Pascual C, Méndez DI, et al. Solution of the relativistic (an) harmonic oscillator using the harmonic balance method. Journal of Sound and Vibration, 2008, 311(3-5): 1447-1456 doi: 10.1016/j.jsv.2007.10.010 [31] Zheng ZC, Lv ZR, Chen YM, et al. A modified incremental harmonic balance method combined with Tikhonov regularization for periodic motion of nonlinear system. Journal of Applied Mechanics, 2022, 89(2): 021001 [32] 黄建亮, 张兵许, 陈树辉. 优化迭代步长的两种改进增量谐波平衡法. 力学学报, 2022, 54(5): 1353-1363 (Huang Jianliang, Zhang Bingxu, Chen Shuhui. Two generalized incremental harmonic balance methods with optimization for iteration steps. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1353-1363 (in Chinese) Huang Jianliang, Zhang Bingxu, Chen Shuhui . Two generalized incremental harmonic balance methods with optimization for iteration steps. Chinese Journal of Theoretical and Applied Mechanics,2022 ,54 (5 ):1353 -1363 (in Chinese)[33] Thomas J, Dowell EH. Using broyden's method to improve the computational performance of a harmonic balance aeroelastic solution technique//AIAA Scitech 2023 Forum, 2023 [34] Ranganathan A. The Levenberg-Marquardt algorithm. Tutoral on LM Algorithm, 2004, 11(1): 101-110 [35] Liu G, Liu JK, Wang L, et al. Time-domain minimum residual method combined with energy balance for nonlinear conservative systems. Mechanical Systems and Signal Processing, 2022, 170: 108818 [36] Jia QH, Luo Y, Zhou HJ, et al. Nonlinear coupling in an asymmetric pendulum. American Journal of Physics, 2022, 90(8): 594-603 doi: 10.1119/10.0010391 [37] 张哲, 代洪华, 冯浩阳等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法. 力学学报, 2022, 54(2): 503-516 (Zhang Zhe, Dai Honghua, Feng Haoyang, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point-boundary-value constraints. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516 (in Chinese) Zhang Zhe, Dai Honghua, Feng Haoyang, et al . Efficient numerical method for orbit dynamic functions with initial value and two-point-boundary-value constraints. Chinese Journal of Theoretical and Applied Mechanics,2022 ,54 (2 ):503 -516 (in Chinese)[38] 王昌涛, 代洪华, 张哲等. 并行加速的局部变分迭代法及其轨道计算应用. 力学学报, 2023, 55(4): 991-1003 (Wang Changtao, Dai Honghua, Zhang Zhe, et al. Parallel accelerated local variational iteration method and its application orbit computation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 991-1003 (in Chinese) Wang Changtao, Dai Honghua, Zhang Zhe, et al . Parallel accelerated local variational iteration method and its application orbit computation. Chinese Journal of Theoretical and Applied Mechanics,2023 ,55 (4 ):991 -1003 (in Chinese) -