EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺寸电弧等离子体的产生、控制及应用

马中洋 李淩豪 孙红梅 倪国华

马中洋, 李淩豪, 孙红梅, 倪国华. 大尺寸电弧等离子体的产生、控制及应用. 力学学报, 2023, 55(12): 2703-2717 doi: 10.6052/0459-1879-23-351
引用本文: 马中洋, 李淩豪, 孙红梅, 倪国华. 大尺寸电弧等离子体的产生、控制及应用. 力学学报, 2023, 55(12): 2703-2717 doi: 10.6052/0459-1879-23-351
Ma Zhongyang, Li Linghao, Sun Hongmei, Ni Guohua. Generation of large volume arc plasma, control and its application. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2703-2717 doi: 10.6052/0459-1879-23-351
Citation: Ma Zhongyang, Li Linghao, Sun Hongmei, Ni Guohua. Generation of large volume arc plasma, control and its application. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2703-2717 doi: 10.6052/0459-1879-23-351

大尺寸电弧等离子体的产生、控制及应用

doi: 10.6052/0459-1879-23-351
基金项目: 国家自然科学基金资助项目(12275317, 11875295和12105325)
详细信息
    通讯作者:

    倪国华, 研究员, 主要研究方向为低温等离子体物理及应用. E-mail: ghni@ipp.ac.cn

  • 中图分类号: O53

GENERATION OF LARGE VOLUME ARC PLASMA, CONTROL AND ITS APPLICATION

  • 摘要: 电弧等离子体在工业领域有着非常广泛的应用, 但受自收缩特性的影响, 造成的温度梯度大、高温区体积小, 制约了该技术应用的广度和深度的发展. 基于电弧发生技术, 通过多种调控手段获得大体积均匀热等离子体, 在热喷涂、微纳粉体制备和煤制乙炔等领域, 已展示出非常好的应用前景. 文章从大尺寸电弧等离子体应用需求入手, 详细综述了国内外在大尺寸电弧等离子体技术及应用方面的研究进展. 首先, 从产生的方式上, 介绍了多相交流、多电极直流和磁驱动旋转电弧等离子体发生器, 并分别阐述了大尺寸热等离子体产生的基本原理和电弧的基本特征; 在电弧特性控制方面, 基于发生器结构特征, 从电极几何位形、气流驱动和磁场驱动等几个方面, 汇总了等离子体的调控方法及其调控机制, 论述了它们对等离子体位形、动态特性和流动特性的影响;最后, 介绍了国内外大尺寸电弧等离子体应用的基本情况及其研究进展, 围绕着应用痛点, 进一步凝练亟需解决的关键科学技术问题, 展望了未来的发展趋势, 为电弧等离子体技术的应用升级和新领域应用的拓展提供支持.

     

  • 图  1  三相交流电弧发生器[41]

    Figure  1.  Diagrams of 3-phase AC arc generator[41]

    图  2  导轨式电极结构三相交流电弧等离子体炬[43]

    Figure  2.  Schematic of 3-phase arc plasma torch with rail electrodes[43]

    图  3  十二相交流电弧等离子体炬示意图和电弧室俯视图[48-49]

    Figure  3.  Diagrams of 12-phase arc plasma torch and top view of the arc chamber[48-49]

    图  4  六相交流电弧等离子体炬示意图和电弧等离子体射流照片[53]

    Figure  4.  Images of 6-phase arc plasma torch and the plasma jet[53]

    图  6  V型电弧等离子体发生器及其放电示意图[59]

    Figure  6.  The V-type arc plasma torch[59]

    图  5  六阴极−六阳极电极直流电弧发生器装置[58]

    Figure  5.  The photograph of DC arc generator with twelve electrode[58]

    图  7  三阴极−三阳极直流电弧发生器装置[33]

    Figure  7.  Illustration of DC arc plasma torch with six electrode[33]

    图  8  三阴极电弧发生器示意图

    Figure  8.  Diagrams of the three cathode arc generator

    图  9  不同电弧电流下等离子体射流图像[77]

    Figure  9.  Variation of the plasma jet with different arc currents[77]

    图  10  DeltaGun发生器示意图

    Figure  10.  Schematic of the DeltaGun

    图  11  笼蔽效应示意图[78]

    Figure  11.  Schematic of the cage effect[78]

    图  12  磁驱动旋转电弧发生器示意图

    Figure  12.  Schematics of magnetically rotating arc plasma generator

    图  13  螺旋位形结构电弧照片[88]

    Figure  13.  Photos of the spiral arc[88]

    图  14  磁扩散等离子体图像[94]

    Figure  14.  Images of diffuse arc plasma[94]

    图  15  三相交流电弧等离子体放电图像[38, 41]

    Figure  15.  Images of three-phase AC arc plasma discharge[38, 41]

    图  16  一个放电周期内的电弧存在区域[98]

    Figure  16.  The arc existence area within one discharge cycle[98]

    图  17  六电极直流电弧发生器的4种电极结构和对应的放电照片[31]

    Figure  17.  Schematic diagram of four electrode structures and corresponding discharge photos of a six-electrode DC arc generator[31]

    图  18  不同磁场强度下阴极斑点图像[111]

    Figure  18.  Cathodic spots images at different magnetic field[111]

    图  19  不同氩气、氦气体积流量比例下电弧的连续图像[112]

    Figure  19.  Successive images of arc plasma under different plasma-forming gases[112]

    图  20  放电电弧图像[114]

    Figure  20.  Arc discharge image[114]

    图  21  不同应用领域的涂层[73, 115-116]

    Figure  21.  Coatings in different application fields[73, 115-116]

    图  22  石墨烯制备实验装置示意图[119]

    Figure  22.  Schematic diagram of the experimental apparatus[119]

  • [1] 过增元, 赵文华. 电弧与热等离子体. 北京: 科学出版社, 1986 (Guo Zengyuan, Zhao Wenhua. Electric Arc with Thermal Plasma. Beijing: China Science Publishing & Media Ltd., 1986 (in Chinese)

    Guo Zengyuan, Zhao Wenhua. Electric Arc with Thermal Plasma. Beijing: China Science Publishing & Media Ltd., 1986 (in Chinese)
    [2] Boulos I, Fauchais E. Thermal Plasmas: Fundamentals and Applications. Berlin: Springer Science Business Media, 1994
    [3] Colombo V, Concetti A, Ghedini E, et al. High-speed imaging in plasma arc cutting: A review and new developments. Plasma Sources Science & Technology, 2009, 18(2): 023001
    [4] Wu D, Tashiro S, Hua X, et al. A novel electrode-arc-weld pool model for studying the keyhole formation in the keyhole plasma arc welding process. Journal of Physics D: Applied Physics, 2019, 52(16): 5203
    [5] Heberlein J, Murphy AB. Thermal plasma waste treatment. Journal of Physics D: Applied Physics, 2008, 41(5): 3001
    [6] Iwao T, Yumoto M. Portable application of thermal plasma and are discharge for waste treatment, thermal spraying and surface treatment. IEEJ Transactions on Electrical and Electronic Engineering, 2006, 1(2): 163-170 doi: 10.1002/tee.20033
    [7] Ji T, Wei L, Wang L, et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 5201
    [8] Nandyala HP, Kumar A, Thankappan J. A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance. Plasma Science & Technology, 2023, 25(5): 5503
    [9] Asmann M, Cook RF, Heberlein JV, et al. Chemical vapor deposition of an aluminum nitride-diamond composite in a triple torch plasma reactor. Journal of Materials Research, 2001, 16(2): 469-477 doi: 10.1557/JMR.2001.0070
    [10] Gao J, Zhou L, Liang J, et al. Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma. Nano Research, 2018, 11(3): 1470-1481 doi: 10.1007/s12274-017-1764-3
    [11] Samal S. Thermal plasma technology: The prospective future in material processing. Journal of Cleaner Production, 2017, 142: 3131-3150 doi: 10.1016/j.jclepro.2016.10.154
    [12] Safronov AA, Kuznetsov VE, Vasilieva OB, et al. AC plasma torches. arc initiation systems, design features and applications. Instruments and Experimental Techniques, 2019, 62(2): 193-200
    [13] Surov AV, Popov SD, Popov VE, et al. Multi-gas AC plasma torches for gasification of organic substances. Fuel, 2017, 203(1): 1007-1014
    [14] Safronov AA, Vasilieva OB, Dudnik JD, et al. Investigation of the AC plasma torch working conditions for the plasma chemical applications. Journal of Physics: Conference Series, 2017, 825(1): 012013
    [15] Safronov AA, Vasilieva OB, Dudnik JD, et al. Analysis of physics processes in the AC plasma torch discharge under high pressure. Journal of Physics: Conference Series, 2017, 825(1): 2014
    [16] Tanaka M, Hashizume T, Saga K, et al. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics. Journal of Physics D: Applied Physics, 2017, 50(46): 465604 doi: 10.1088/1361-6463/aa8cac
    [17] Tanaka M, Imatsuji T, Hashizume T, et al. Investigation of temperature characteristics of multiphase AC arc by high-speed visualization. Journal of Fluid Science and Technology, 2017, 12(3): JFST0024 doi: 10.1299/jfst.2017jfst0024
    [18] Okuma T, Maruyama H, Hashizume T, et al. Effects of the driving frequency on temperature in a multiphase AC arc. IEEE Transactions on Plasma Science, 2019, 47(1): 32-38 doi: 10.1109/TPS.2018.2832286
    [19] Okuma T, Maruyama H, Imatsuji T, et al. Investigation of arc behavior and temperature distribution corresponding to electrode and phase configurations in a multiphase AC arc. Journal of Chemical Engineering of Japan, 2020, 53(9): 509-515 doi: 10.1252/jcej.20we001
    [20] 李辉, 夏维东. 磁旋转弧等离子体中的弧电压突变现象. 核聚变与等离子体物理, 2004, 24(3): 215-217 (Li Hui, Xia Weidong. Phenomenon of the sudden change of arc voltage in the arcplasma rotated by magnetic field. Nuclear Fusion and Plasma Physics, 2004, 24(3): 215-217 (in Chinese) doi: 10.16568/j.0254-6086.2004.03.011

    Li Hui, Xia Weidong. Phenomenon of the sudden change of arc voltage in the arcplasma rotated by magnetic field. Nuclear Fusion and Plasma Physics, 2004, 24(3): 215-217 (in Chinese) doi: 10.16568/j.0254-6086.2004.03.011
    [21] 杜百合, 黎林村, 马强. 磁扩散电弧运动图像实验研究. 实验流体力学, 2005, 19(3): 47-50 (Du Baihe, Li Lincun, Ma Qiang. Experimental study on arc movement images effected by magnetic diffusing. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 47-50 (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.03.010

    Du Baihe, Li Lincun, Ma Qiang. Experimental study on arc movement images effected by magnetic diffusing. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 47-50 (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.03.010
    [22] 杜百合, 黎林村, 夏维东. 磁驱动旋转电弧运动图像及弧电压脉动的实验研究. 核技术, 2005, 28(10): 745-750 (Du Baihe, Li Lincun, Xia Weidong. Experimental study on arc images and voltage fluctuation of magnetically driven arcs. Nuclear Techniques, 2005, 28(10): 745-750 (in Chinese)

    Du Baihe, Li Lincun, Xia Weidong. Experimental study on arc images and voltage fluctuation of magnetically driven arcs. Nuclear Techniques, 2005, 28(10): 745-750 (in Chinese)
    [23] 白冰, 查俊, 夏维东. 磁分散电弧等离子体位形的阴极形状效应. 核聚变与等离子体物理, 2012, 32(4): 301-306 (Bai Bing, Zha Jun, Xia Weidong. The effect of cathode shape in magnetically dispersed arc plasma. Nuclear Fusion and Plasma Physics, 2012, 32(4): 301-306 (in Chinese)

    Bai Bing, Zha Jun, Xia Weidong. The effect of cathode shape in magnetically dispersed arc plasma. Nuclear Fusion and Plasma Physics, 2012, 32(4): 301-306 (in Chinese)
    [24] 焦凌云. 大尺度磁分散电弧等离子体的探针诊断. 核聚变与等离子体物理, 2012, 32(4): 317-322 (Jiao Lingyun. Langmuir-probe diagnostics of large-scale magnetically rotating arc plasmas. Nuclear Fusion and Plasma Physics, 2012, 32(4): 317-322 (in Chinese)

    Jiao Lingyun. Langmuir-probe diagnostics of large-scale magnetically rotating arc plasmas. Nuclear Fusion and Plasma Physics, 2012, 32(4): 317-322 (in Chinese)
    [25] Xia W, Fulcheri L. Characterization of a 3-phase a.c. free burning arc plasma. Plasma Science and Technology, 2006, 8(2): 156-163
    [26] Abdo Y, Rohani V, Fulcheri L. A simple theory for cathode jets in plasma arcs. Journal of Physics: Conference Series, 2019, 1243(1): 012016 doi: 10.1088/1742-6596/1243/1/012016
    [27] Takali S, Rohani VJ, Cressault Y, et al. 3-D flow modeling of a three-phase AC plasma torch working with air using a stationary source domain with gas radiation. IEEE Transactions on Plasma Science, 2016, 44(6): 996-1008 doi: 10.1109/TPS.2016.2556720
    [28] Fulcheri L, Fabry F, Takali S, et al. Three-phase AC arc plasma systems: A review. Plasma Chemistry and Plasma Processing, 2015, 35(4): 565-585 doi: 10.1007/s11090-015-9619-8
    [29] Takali S, Fabry F, Rohani V, et al. Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels. Journal of Physics: Conference Series, 2014, 550(1): 012018
    [30] Ravary B, Fulcheri L, Bakken JA, et al. Influence of the electromagnetic forces on momentum and heat transfer in a 3-phase Ac plasma reactor. Plasma Chemistry and Plasma Processing, 1999, 19(1): 69-89 doi: 10.1023/A:1021855916566
    [31] Zhao Y, Ni G, Liu W, et al. Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations. Plasma Science and Technology, 2022, 24(5): 055407 doi: 10.1088/2058-6272/ac4ee7
    [32] 赵彦君. 多电极直流电弧等离子体特性的研究. [博士论文]. 合肥: 中国科学技术大学, 2022 (Zhao Yanjun. Study on the characteristics ofmulti-electrode DC arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)

    Zhao Yanjun. Study on the characteristics ofmulti-electrode DC arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)
    [33] Lin Q, Zhao Y, Duan W, et al. Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2. Chinese Physics B, 2020, 29(12): 125201
    [34] 林启富. 交直流多弧等离子体特性及其应用研究. [博士论文]. 合肥: 中国科学技术大学, 2020 (Lin Qifu. Study on characteristics and applications of AC/DC multi-arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese)

    Lin Qifu. Study on characteristics and applications of AC/DC multi-arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese)
    [35] 周法. 交流电弧等离子体炬及其应用的研究进展. 空气动力学报, 2022, 40(5): 15-29 (Zhou Fa. Research progress on AC arc plasma torch and its application. Acta Aerodynamica Sinica, 2022, 40(5): 15-29 (in Chinese)

    Zhou Fa. Research progress on AC arc plasma torch and its application. Acta Aerodynamica Sinica, 2022, 40(5): 15-29 (in Chinese)
    [36] Bonet C, Foex M, Munz R, et al. Decomposition of various materials used as electrodes in three-phase alternating current plasma generator. Journal of Physics D: Applied Physics, 1976, 9(12): L141-L147 doi: 10.1088/0022-3727/9/12/002
    [37] Gold D, Bonet C. A 100-kW three-phase AC plasma furnace for spheroidization of aluminum silicate particles. Plasma Chemistry and Plasma Processing, 1981, 1(2): 161-178 doi: 10.1007/BF00564578
    [38] Rehmet C, Fabry F, Rohani V, et al. Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch: comparison between parallel and coplanar electrode configurations. Plasma Sources Science and Technology, 2014, 23(6): 065011 doi: 10.1088/0963-0252/23/6/065011
    [39] Rehmet C, Fabry F, Rohani V, et al. A comparison between MHD modeling and experimental results in a 3-phase AC arc plasma torch: Influence of the electrode tip geometry. Plasma Chemistry and Plasma Processing, 2014, 34(4): 975-996 doi: 10.1007/s11090-014-9536-2
    [40] Rehmet C, Rohani V, Cauneau F, et al. 3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch. Plasma Chemistry and Plasma Processing, 2013, 33(2): 491-515 doi: 10.1007/s11090-013-9438-8
    [41] Rehmet C, Fabry F, Rohani V, et al. High speed video camera and electrical signal analyses of arcs behavior in a 3-phase AC arc plasma torch. Plasma Chemistry and Plasma Processing, 2013, 33(4): 779-796 doi: 10.1007/s11090-013-9458-4
    [42] Rutberg PG, Popov SD, Surov AV, et al. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch. Journal of Physics: Conference Series, 2012, 406(1): 012028
    [43] Rutberg PG, Safronov AA, Popov SD, et al. Multiphase stationary plasma generators working on oxidizing media. Plasma Physics and Controlled Fusion, 2005, 47(10): 1681-1696 doi: 10.1088/0741-3335/47/10/006
    [44] Watanabe T, Yatsuda K, Yao Y, et al. Innovative in-flight glass-melting technology using thermal plasmas. Pure and Applied Chemistry, 2010, 82(6): 1337-1351 doi: 10.1351/PAC-CON-09-09-19
    [45] Yao Y, Yatsuda K, Watanabe T, et al. Characteristics of multi-phase alternating current arc for glass in-flight melting. Plasma Chemistry and Plasma Processing, 2009, 29(5): 333-346 doi: 10.1007/s11090-009-9182-2
    [46] Yao Y, Yatsuda K, Watanabe T, et al. Investigation on in-flight melting behavior of granulated alkali-free glass raw material under different conditions with 12-phase AC arc. Chemical Engineering Journal, 2008, 144(2): 317-323 doi: 10.1016/j.cej.2008.06.039
    [47] Yao Y, Hossain MM, Watanabe T, et al. A multi-phase AC arc discharge and its application in in-flight thermal treatment of raw glass powders. Chemical Engineering Journal, 2008, 139(2): 390-397 doi: 10.1016/j.cej.2007.11.016
    [48] Matsuura T, Taniguchi K, Watanabe T. A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes. Thin Solid Films, 2007, 515(9): 4240-4246 doi: 10.1016/j.tsf.2006.02.086
    [49] Tanaka M, Tsuruoka Y, Liu Y, et al. Stability analysis of multi-phase AC arc discharge for in-flight glass melting. Current Applied Physics, 2011, 11(5): S35-S39 doi: 10.1016/j.cap.2011.05.037
    [50] 郭恒. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 1-10 (Guo Heng. Numerical simulation of plasma jet characteristics in six phase AC arc discharge at sub atmospheric pressure. Acta Physica Sinica, 2018, 67(5): 1-10 (in Chinese)

    Guo Heng. Numerical simulation of plasma jet characteristics in six phase AC arc discharge at sub atmospheric pressure. Acta Physica Sinica, 2018, 67(5): 1-10 (in Chinese)
    [51] 苏运波. 六相交流电弧放电装置电源系统设计及性能测试. 机械工程与自动化, 2016, 4: 181-183 (Su Yunbo. Design and performance testing of the power supply system for a six phase ac arc discharge device. Mechanical Engineering and Automation, 2016, 4: 181-183 (in Chinese)

    Su Yunbo. Design and performance testing of the power supply system for a six phase ac arc discharge device. Mechanical Engineering and Automation, 2016, 4: 181-183 (in Chinese)
    [52] 苏运波. 多相交流电弧放电实验装置关键技术的研究. [硕士论文]. 唐山: 华北理工大学, 2017 (Su Yunbo. Study on key techniques of multi-phase ac arc discharge experiment devic. [Master Thesis]. Tangshan: North China University of Science and Technology, 2017 (in Chinese)

    Su Yunbo. Study on key techniques of multi-phase ac arc discharge experiment devic. [Master Thesis]. Tangshan: North China University of Science and Technology, 2017 (in Chinese)
    [53] Guo H, Su YB, Li HP, et al. Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments. Acta Physica Sinica, 2018, 67(4): 045201
    [54] Harry JE, Knight R. Investigation of the intensity distribution of large volume multiple-arc discharges. Journal of Physics D: Applied Physics, 1984, 17(2): 343-350 doi: 10.1088/0022-3727/17/2/018
    [55] Harry JE, Knight R. Simultaneous operation of electric arcs from the same supply. IEEE Transactions on Plasma Science, 1981, 9(4): 248-254 doi: 10.1109/TPS.1981.4317432
    [56] Harry JE, Hobson L. Production of a large volume discharge using a multiple arc system. IEEE Transactions on Plasma Science, 1979, 7(3): 157-162 doi: 10.1109/TPS.1979.4317221
    [57] Harry JE, Hobson L. A multiple-arc system. Journal of Physics E:Scientific Instruments, 1979, 12(5): 357-358 doi: 10.1088/0022-3735/12/5/006
    [58] Leng X, Zhang G, Wu L. The characteristic of twin-electrode TIG coupling arc pressure. Journal of Physics D: Applied Physics, 2006, 39(6): 1120-1126 doi: 10.1088/0022-3727/39/6/017
    [59] Van Der Walt IJ, Havenga JL, Nel JT. A thermal non-transfer arc V-type torch plasma//2008 IEEE 35th International Conference on Plasma Science, 2008: 1-1
    [60] Liu B, Kikuchi M, Li HP, et al. Dual torch plasma arc furnace for medical waste treatment. Plasma Science & Technology, 2007, 9(6): 709-712
    [61] Chen L, Meng Y, Shen J, et al. Coal pyrolysis to acetylene using dc hydrogen plasma torch: Effects of system variables on acetylene concentration. Journal of Physics D: Applied Physics, 2009, 42(5): 055505 doi: 10.1088/0022-3727/42/5/055505
    [62] Cheron BG, Bultel A, Delair L. Experimental study of a double arc nitrogen plasma: Static and dynamic behavior. IEEE Transactions on Plasma Science, 2007, 35(2): 498-508 doi: 10.1109/TPS.2007.892698
    [63] 王城. 扩散电弧等离子体的实验研究及高强度光源的初步研究. [博士论文]. 合肥: 中国科学技术大学, 2015 (Wang Cheng. Experimental study of diffusearc plasma and application on high-intensity light source. [PhD Thesis]. Hefei: University of Science and Technology of China, 2015 (in Chinese)

    Wang Cheng. Experimental study of diffusearc plasma and application on high-intensity light source. [PhD Thesis]. Hefei: University of Science and Technology of China, 2015 (in Chinese)
    [64] Pfender E. Multiple arc plasma device with continuous gas jet. US: WO86/02024 [P], 1984
    [65] Young RM, Pfender E. A novel approach for introducing particulate matter into thermal plasmas: The triple-cathode arc. Plasma Chemistry and Plasma Processing, 1989, 9(4): 465-481 doi: 10.1007/BF01023914
    [66] Schein J, Richter M, Landes KD, et al. Tomographic Investigation of plasma jets produced by multielectrode plasma torches. Journal of Thermal Spray Technology, 2008, 17(3): 338-343 doi: 10.1007/s11666-008-9186-0
    [67] Schein J, Zierhut J, Dzulko M, et al. Improved plasma spray torch stability through multi-electrode design. Contributions to Plasma Physics, 2007, 47(7): 498-504 doi: 10.1002/ctpp.200710064
    [68] Marantz, DR, Herman H. Plasma spray gun and method of use. US: 5144110 [P], 1992
    [69] Marantz DR, Herman H. Plasma generating apparatus and method. US: 4982067 [P], 1991
    [70] Ross DA. Plasma jet converging system. US: 5556558 [P], 1994
    [71] Ross DA. Plasma torch with axial reactant feed. US: 5008511 [P], 1991
    [72] Marques JL, Forster G, Schein J. Multi-electrode plasma torches: motivation for development and current state-of-the-art. The Open Plasma Physics Journal, 2009, 2(1): 89-98
    [73] Berghaus JO, Marple B, Moreau C. Suspension plasma spraying of nanostructured WC-12Co coatings. Journal of Thermal Spray Technology, 2006, 15(4): 676-681 doi: 10.1361/105996306X147072
    [74] Zhang Z, Wang C, Sun Q, et al. Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch. Plasma Science and Technology, 2021, 23(7): 075404 doi: 10.1088/2058-6272/abfd19
    [75] Wang C, Zhang Z, Xia W, et al. Direct observation of anode arc root behaviors in a non-transferred arc plasma device with multiple cathodes. Plasma Chemistry and Plasma Processing, 2017, 37(2): 371-382 doi: 10.1007/s11090-016-9782-6
    [76] Wang C, Zhang Z, Cui H, et al. Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes. Chinese Physics B, 2017, 26(8): 085207 doi: 10.1088/1674-1056/26/8/085207
    [77] Wang C, Cui H, Zhang Z, et al. Production of long, laminar plasma jets at atmospheric pressure with multiple cathodes. Contributions to Plasma Physics, 2017, 57(2): 58-66 doi: 10.1002/ctpp.201600073
    [78] Zhang D, Zheng L, Hu X, et al. Numerical studies of arc plasma generation in single cathode and three-cathode plasma torch and its impact on plasma spraying. International Journal of Heat and Mass Transfer, 2016, 98: 508-522 doi: 10.1016/j.ijheatmasstransfer.2016.03.038
    [79] 胡明. 磁旋转直流电弧等离子体炬的实验研究. [博士论文]. 合肥: 中国科学技术大学, 2014 (Hu Ming. Experimental study on magneticrotation arc plasma torch. [PhD Thesis]. Hefei: University of Science and Technology of China, 2014 (in Chinese)

    Hu Ming. Experimental study on magneticrotation arc plasma torch. [PhD Thesis]. Hefei: University of Science and Technology of China, 2014 (in Chinese)
    [80] Szente RN, Munz RJ, Drouet MG. Cathode erosion in inert-gases-the importance of electrode contamination. Plasma Chemistry and Plasma Processing, 1989, 9(1): 121-132 doi: 10.1007/BF01015830
    [81] Szente RN, Munz RJ, Drouet MG. Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen. Journal of Physics D: Applied Physics, 1988, 21(6): 909-913 doi: 10.1088/0022-3727/21/6/008
    [82] Szente RN, Munz RJ, Drouet MG. Effect of the arc velocity on the cathode erosion rate in argon nitrogen mixtures. Journal of Physics D: Applied Physics, 1987, 20(6): 754-756 doi: 10.1088/0022-3727/20/6/010
    [83] Szente RN, Munz RJ, Drouet MG. The effect of low concentrations of a polyatomic-gas in argon on erosion on copper cathodes in a magnetically rotated arc. Plasma Chemistry and Plasma Processing, 1987, 7(3): 349-364 doi: 10.1007/BF01016522
    [84] Meng Q, Wang Y, Zhang L. Irradiance characteristics and optimization design of a large-scale solar simulator. Solar Energy, 2011, 85(9): 1758-1767 doi: 10.1016/j.solener.2011.04.014
    [85] Guesdon C, Alxneit I, Tschudi HR, et al. PSI's 1 kW imaging furnace—A tool for high-temperature chemical reactivity studies. Solar Energy, 2006, 80(10): 1344-1348 doi: 10.1016/j.solener.2005.04.028
    [86] Li H, Ma Q, Li LC, et al. Imaging of behavior of multiarc roots of cathode in a dc arc discharge. IEEE Transactions on Plasma Science, 2005, 33(2): 404-405 doi: 10.1109/TPS.2005.844993
    [87] Minoo H, Arsaoui A, Bouvier A. An analysis of the cathode region of a vortex-stabilized arc plasma generator. Journal of Physics D: Applied Physics, 1995, 28(8): 1630-1648 doi: 10.1088/0022-3727/28/8/012
    [88] Zha J, Zhang X, Xu Z, et al. Phenomena of multiarc roots and parallel arcs in a large-scale magnetically rotating arc plasma generator. IEEE Transactions on Plasma Science, 2013, 41(3): 601-605 doi: 10.1109/TPS.2013.2243474
    [89] Desaulnier S, Meunier JL. A study of magnetically rotating arc stability using fluctuations in voltage, velocity and emission line intensity. Journal of Physics D: Applied Physics, 1995, 28(12): 2505-2513 doi: 10.1088/0022-3727/28/12/017
    [90] Heling Z, Zhipeng Z, Weidong X. Investigation of a novel large area dispersed arc plasma source with time-resolved ICCD imaging. IEEE Transactions on Plasma Science, 2008, 36(4): 1082-1083 doi: 10.1109/TPS.2008.917775
    [91] Heling Z, Cun LL, Liang C, et al. ICCD Imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source. IEEE Transactions on Plasma Science, 2008, 36(4): 1084-1085 doi: 10.1109/TPS.2008.923895
    [92] Li LC, Xia WD, Zhou HL, et al. Experimental observation and numerical analysis of arc plasmas diffused by magnetism. The European Physical Journal D, 2007, 47(1): 75-81
    [93] Xia W, Li L, Zhao Y, et al. Dynamics of large-scale magnetically rotating arc plasmas. Applied Physics Letters, 2006, 88(21): 1501
    [94] Wang C, Li W, Zhang X, et al. Evolution of magnetically rotating arc into large area arc plasma. Chinese Physics B, 2015, 24(6): 065206 doi: 10.1088/1674-1056/24/6/065206
    [95] Tanaka M, Liu Y, Tsuruoka Y, et al. Experimental investigation of in-flight melting by hybrid heating of multi-phase alternating current arc with oxygen burner for alkali-free glass raw materials. Thin Solid Films, 2012, 523: 67-71 doi: 10.1016/j.tsf.2012.07.064
    [96] Yao YC, Watanabe T, Yatsuda K. Application and characterization of 12-phase AC arc for glass in-flight melting. Advanced Materials Research, 2012, 443(1): 637-642
    [97] Liu Y, Tanaka M, Ikeba T, et al. Fluctuation measurement of multi-phase AC arc and in-flight particle temperature. Journal of Chemical Engineering of Japan, 2013, 46(10): 672-676 doi: 10.1252/jcej.13we098
    [98] Liu Y, Tanaka M, Choi S, et al. Investigation of in-flight glass melting by controlling the high-temperature region of multiphase AC arc plasma. International Journal of Applied Glass Science, 2014, 5(4): 443-451 doi: 10.1111/ijag.12081
    [99] Watanabe T, Liu Y, Tanaka M. Investigation of electrode phenomena in an innovative thermal plasma process for glass melting. Plasma Chemistry and Plasma Processing, 2014, 34(3): 443-456 doi: 10.1007/s11090-014-9530-8
    [100] Hu YH, Meng X, Huang HJ, et al. A novel anode structure for diffuse arc anode attachment. Journal of Physics D: Applied Physics, 2021, 54(36): 01
    [101] Niu C, Meng X, Huang H, et al. Numerical simulation of the effects of protrusion on DC arc anode attachment. Plasma Science and Technology, 2021, 23(10): 104006 doi: 10.1088/2058-6272/ac125e
    [102] Sun JH, Sun SR, Niu C, et al. Non-equilibrium modeling on the plasma-electrode interaction in an argon DC plasma torch. Journal of Physics D: Applied Physics, 2021, 54(46): 465202 doi: 10.1088/1361-6463/ac122a
    [103] Hu YH, Meng X, Huang HJ, et al. Experimental study on the effect of argon shielding gas on the suppression of nitrogen arc anode ablation. Journal of Physics D: Applied Physics, 2022, 55(37): 375202 doi: 10.1088/1361-6463/ac7bb8
    [104] Harry JE, Guile AE. Constricted or diffuse arcs rotating in high magnetic fields in air at atmospheric pressure. Proceedings of the Institution of Electrical Engineers, 1968, 115(7): 1019 doi: 10.1049/piee.1968.0184
    [105] Chen T, Wang C, Xia WD. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc. Journal of Physics D: Applied Physics, 2016, 49(8): 085202 doi: 10.1088/0022-3727/49/8/085202
    [106] Hu MB, Dang SC, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chinese Physics B, 2015, 24(7): 074502 doi: 10.1088/1674-1056/24/7/074502
    [107] Zhang XN, Murphy AB, Li HP, et al. Combined diffusion coefficients for a mixture of three ionized gases. Plasma Sources Science and Technology, 2014, 23(6): 065044 doi: 10.1088/0963-0252/23/6/065044
    [108] 查俊. 磁旋转电弧和分散电弧等离子体的实验研究. [博士论文]. 合肥: 中国科学技术大学, 2013 (Zha Jun. The experimental study of the magnetically rotating arc and the dispersed arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese)

    Zha Jun. The experimental study of the magnetically rotating arc and the dispersed arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese)
    [109] Bai B, Zha J, Zhang X, et al. Simulation of magnetically dispersed arc plasma. Plasma Science and Technology, 2012, 14(2): 118-121 doi: 10.1088/1009-0630/14/2/07
    [110] Dong WX, Ling HZ, Peng ZZ, et al. Evolution of cathodic Arc roots in a large-scale magnetically rotating arc plasma. IEEE Transactions on Plasma Science, 2008, 36(4): 1048-1049 doi: 10.1109/TPS.2004.924569
    [111] Wang C, Li W, Zhang X, et al. Observation of thermal cathodic hot spots in a magnetically rotating arc plasma generator. IEEE Transactions on Plasma Science, 2015, 43(10): 3716-3720 doi: 10.1109/TPS.2015.2474142
    [112] Wang C, Cui HC, Li WW, et al. Production of a large area diffuse arc plasma with multiple cathode. Chinese Physics B, 2017, 26(2): 025202 doi: 10.1088/1674-1056/26/2/025202
    [113] Huang HJ, Pan WX, Wu CK. Aerodynamic dispersion of anode arc attachment through a converging-diverging nozzle. IEEE Transactions on Plasma Science, 2019, 47(1): 847-852 doi: 10.1109/TPS.2018.2880246
    [114] Pan W, Chen L, Meng X, et al. Sufficiently diffused attachment of nitrogen arc by gasdynamic action. Theoretical and Applied Mechanics Letters, 2016, 6(6): 293-296 doi: 10.1016/j.taml.2016.09.001
    [115] Chen D, Dambra C, Dorfman M. Deposition, microstructure and thermal cycling performance of strain-tolerant thermal barrier coatings. Journal of Thermal Spray Technology, 2022, 32(4): 1108-1114
    [116] Babu A, Dzhurinskiy D, Dautov S, et al. Structure and electrochemical behavior of atmospheric plasma sprayed Cr3C2-NiCr cermet composite coatings. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106105
    [117] Mauer G, Vaßen R, Stöver D. Preliminary study on the TriplexPro™-200 gun for atmospheric plasma spraying of yttria-stabilized zirconia. Surface and Coatings Technology, 2008, 202(18): 4374-4381
    [118] Tarasi F, Alebrahim E, Dolatabadi A, et al. A comparative study of YSZ suspensions and coatings. Coatings, 2019, 9(3): 188 doi: 10.3390/coatings9030188
    [119] Wang C, Sun L, Dai X, et al. Continuous synthesis of graphene nano-flakes by a magnetically rotating arc at atmospheric pressure. Carbon, 2019, 148: 394-402 doi: 10.1016/j.carbon.2019.04.015
    [120] Chen X, Wang C, Song M, et al. The morphological transformation of carbon materials from nanospheres to graphene nanoflakes by thermal plasma. Carbon, 2019, 155: 521-530 doi: 10.1016/j.carbon.2019.08.077
    [121] Zhang Z, Wang C, Sun Q, et al. Spheroidization of tungsten powder by a DC arc plasma generator with multiple cathodes. Plasma Chemistry and Plasma Processing, 2022, 42(4): 939-956 doi: 10.1007/s11090-022-10250-6
    [122] 马杰. 磁旋转弧等离子体裂解煤制乙炔研究. [博士论文]. 杭州: 浙江大学, 2016 (Ma Jie. Pyrolysis of coal to acetylene by magnetically rotating plasma arc. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese)

    Ma Jie. Pyrolysis of coal to acetylene by magnetically rotating plasma arc. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese)
    [123] 许凯. 旋转弧等离子体裂解煤制乙炔结焦规律及清焦技术研究. [硕士论文]. 杭州: 浙江大学, 2019 (Xu Kai. Coking rules and decoking technology of coal pyrolysis to acetylene in rotating arc plasma. [Master Thesis]. Hangzhou: Zhejiang University, 2019 (in Chinese)

    Xu Kai. Coking rules and decoking technology of coal pyrolysis to acetylene in rotating arc plasma. [Master Thesis]. Hangzhou: Zhejiang University, 2019 (in Chinese)
    [124] Song M, Wang C, Zhu C, et al. An effective fabrication and highly tunable microwave absorption of nitrogen-doped graphene. Diamond and Related Materials, 2022, 129: 109348 doi: 10.1016/j.diamond.2022.109348
    [125] Bond RL, Ladner WR, Mcconnell GIT, et al. Production of acetylene from coal, using a plasma jet. Nature, 1963, 200(491): 1313
    [126] Nicholson R, Littlewood K. Plasma pyrolysis of coal. Nature, 1972, 236(5347): 397 doi: 10.1038/236397a0
    [127] Xie KC, Lu YK, Tian YJ, et al. Study of coal conversion in an arc plasma jet. Energy Sources, 2002, 24(12): 1093-1098 doi: 10.1080/00908310290087012
    [128] Bao WR, Chang LP, Lu YK. Study on main factors influencing acetylene formation during coal pyrolysis in arc plasma. Process Safety and Environmental Protection, 2006, 84(B3): 222-226
  • 加载中
图(22)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 录用日期:  2023-11-02
  • 网络出版日期:  2023-11-03

目录

    /

    返回文章
    返回