[1] |
过增元, 赵文华. 电弧与热等离子体. 北京: 科学出版社, 1986 (Guo Zengyuan, Zhao Wenhua. Electric Arc with Thermal Plasma. Beijing: China Science Publishing & Media Ltd., 1986 (in Chinese)Guo Zengyuan, Zhao Wenhua. Electric Arc with Thermal Plasma. Beijing: China Science Publishing & Media Ltd., 1986 (in Chinese)
|
[2] |
Boulos I, Fauchais E. Thermal Plasmas: Fundamentals and Applications. Berlin: Springer Science Business Media, 1994
|
[3] |
Colombo V, Concetti A, Ghedini E, et al. High-speed imaging in plasma arc cutting: A review and new developments. Plasma Sources Science & Technology, 2009, 18(2): 023001
|
[4] |
Wu D, Tashiro S, Hua X, et al. A novel electrode-arc-weld pool model for studying the keyhole formation in the keyhole plasma arc welding process. Journal of Physics D: Applied Physics, 2019, 52(16): 5203
|
[5] |
Heberlein J, Murphy AB. Thermal plasma waste treatment. Journal of Physics D: Applied Physics, 2008, 41(5): 3001
|
[6] |
Iwao T, Yumoto M. Portable application of thermal plasma and are discharge for waste treatment, thermal spraying and surface treatment. IEEJ Transactions on Electrical and Electronic Engineering, 2006, 1(2): 163-170 doi: 10.1002/tee.20033
|
[7] |
Ji T, Wei L, Wang L, et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 5201
|
[8] |
Nandyala HP, Kumar A, Thankappan J. A three-dimensional numerical study on the effect of geometric asymmetry on arcjet thruster performance. Plasma Science & Technology, 2023, 25(5): 5503
|
[9] |
Asmann M, Cook RF, Heberlein JV, et al. Chemical vapor deposition of an aluminum nitride-diamond composite in a triple torch plasma reactor. Journal of Materials Research, 2001, 16(2): 469-477 doi: 10.1557/JMR.2001.0070
|
[10] |
Gao J, Zhou L, Liang J, et al. Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma. Nano Research, 2018, 11(3): 1470-1481 doi: 10.1007/s12274-017-1764-3
|
[11] |
Samal S. Thermal plasma technology: The prospective future in material processing. Journal of Cleaner Production, 2017, 142: 3131-3150 doi: 10.1016/j.jclepro.2016.10.154
|
[12] |
Safronov AA, Kuznetsov VE, Vasilieva OB, et al. AC plasma torches. arc initiation systems, design features and applications. Instruments and Experimental Techniques, 2019, 62(2): 193-200
|
[13] |
Surov AV, Popov SD, Popov VE, et al. Multi-gas AC plasma torches for gasification of organic substances. Fuel, 2017, 203(1): 1007-1014
|
[14] |
Safronov AA, Vasilieva OB, Dudnik JD, et al. Investigation of the AC plasma torch working conditions for the plasma chemical applications. Journal of Physics: Conference Series, 2017, 825(1): 012013
|
[15] |
Safronov AA, Vasilieva OB, Dudnik JD, et al. Analysis of physics processes in the AC plasma torch discharge under high pressure. Journal of Physics: Conference Series, 2017, 825(1): 2014
|
[16] |
Tanaka M, Hashizume T, Saga K, et al. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics. Journal of Physics D: Applied Physics, 2017, 50(46): 465604 doi: 10.1088/1361-6463/aa8cac
|
[17] |
Tanaka M, Imatsuji T, Hashizume T, et al. Investigation of temperature characteristics of multiphase AC arc by high-speed visualization. Journal of Fluid Science and Technology, 2017, 12(3): JFST0024 doi: 10.1299/jfst.2017jfst0024
|
[18] |
Okuma T, Maruyama H, Hashizume T, et al. Effects of the driving frequency on temperature in a multiphase AC arc. IEEE Transactions on Plasma Science, 2019, 47(1): 32-38 doi: 10.1109/TPS.2018.2832286
|
[19] |
Okuma T, Maruyama H, Imatsuji T, et al. Investigation of arc behavior and temperature distribution corresponding to electrode and phase configurations in a multiphase AC arc. Journal of Chemical Engineering of Japan, 2020, 53(9): 509-515 doi: 10.1252/jcej.20we001
|
[20] |
李辉, 夏维东. 磁旋转弧等离子体中的弧电压突变现象. 核聚变与等离子体物理, 2004, 24(3): 215-217 (Li Hui, Xia Weidong. Phenomenon of the sudden change of arc voltage in the arcplasma rotated by magnetic field. Nuclear Fusion and Plasma Physics, 2004, 24(3): 215-217 (in Chinese) doi: 10.16568/j.0254-6086.2004.03.011Li Hui, Xia Weidong. Phenomenon of the sudden change of arc voltage in the arcplasma rotated by magnetic field. Nuclear Fusion and Plasma Physics, 2004, 24(3): 215-217 (in Chinese) doi: 10.16568/j.0254-6086.2004.03.011
|
[21] |
杜百合, 黎林村, 马强. 磁扩散电弧运动图像实验研究. 实验流体力学, 2005, 19(3): 47-50 (Du Baihe, Li Lincun, Ma Qiang. Experimental study on arc movement images effected by magnetic diffusing. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 47-50 (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.03.010Du Baihe, Li Lincun, Ma Qiang. Experimental study on arc movement images effected by magnetic diffusing. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 47-50 (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.03.010
|
[22] |
杜百合, 黎林村, 夏维东. 磁驱动旋转电弧运动图像及弧电压脉动的实验研究. 核技术, 2005, 28(10): 745-750 (Du Baihe, Li Lincun, Xia Weidong. Experimental study on arc images and voltage fluctuation of magnetically driven arcs. Nuclear Techniques, 2005, 28(10): 745-750 (in Chinese)Du Baihe, Li Lincun, Xia Weidong. Experimental study on arc images and voltage fluctuation of magnetically driven arcs. Nuclear Techniques, 2005, 28(10): 745-750 (in Chinese)
|
[23] |
白冰, 查俊, 夏维东. 磁分散电弧等离子体位形的阴极形状效应. 核聚变与等离子体物理, 2012, 32(4): 301-306 (Bai Bing, Zha Jun, Xia Weidong. The effect of cathode shape in magnetically dispersed arc plasma. Nuclear Fusion and Plasma Physics, 2012, 32(4): 301-306 (in Chinese)Bai Bing, Zha Jun, Xia Weidong. The effect of cathode shape in magnetically dispersed arc plasma. Nuclear Fusion and Plasma Physics, 2012, 32(4): 301-306 (in Chinese)
|
[24] |
焦凌云. 大尺度磁分散电弧等离子体的探针诊断. 核聚变与等离子体物理, 2012, 32(4): 317-322 (Jiao Lingyun. Langmuir-probe diagnostics of large-scale magnetically rotating arc plasmas. Nuclear Fusion and Plasma Physics, 2012, 32(4): 317-322 (in Chinese)Jiao Lingyun. Langmuir-probe diagnostics of large-scale magnetically rotating arc plasmas. Nuclear Fusion and Plasma Physics, 2012, 32(4): 317-322 (in Chinese)
|
[25] |
Xia W, Fulcheri L. Characterization of a 3-phase a.c. free burning arc plasma. Plasma Science and Technology, 2006, 8(2): 156-163
|
[26] |
Abdo Y, Rohani V, Fulcheri L. A simple theory for cathode jets in plasma arcs. Journal of Physics: Conference Series, 2019, 1243(1): 012016 doi: 10.1088/1742-6596/1243/1/012016
|
[27] |
Takali S, Rohani VJ, Cressault Y, et al. 3-D flow modeling of a three-phase AC plasma torch working with air using a stationary source domain with gas radiation. IEEE Transactions on Plasma Science, 2016, 44(6): 996-1008 doi: 10.1109/TPS.2016.2556720
|
[28] |
Fulcheri L, Fabry F, Takali S, et al. Three-phase AC arc plasma systems: A review. Plasma Chemistry and Plasma Processing, 2015, 35(4): 565-585 doi: 10.1007/s11090-015-9619-8
|
[29] |
Takali S, Fabry F, Rohani V, et al. Development of a 100 kW plasma torch for plasma assisted combustion of low heating value fuels. Journal of Physics: Conference Series, 2014, 550(1): 012018
|
[30] |
Ravary B, Fulcheri L, Bakken JA, et al. Influence of the electromagnetic forces on momentum and heat transfer in a 3-phase Ac plasma reactor. Plasma Chemistry and Plasma Processing, 1999, 19(1): 69-89 doi: 10.1023/A:1021855916566
|
[31] |
Zhao Y, Ni G, Liu W, et al. Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations. Plasma Science and Technology, 2022, 24(5): 055407 doi: 10.1088/2058-6272/ac4ee7
|
[32] |
赵彦君. 多电极直流电弧等离子体特性的研究. [博士论文]. 合肥: 中国科学技术大学, 2022 (Zhao Yanjun. Study on the characteristics ofmulti-electrode DC arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)Zhao Yanjun. Study on the characteristics ofmulti-electrode DC arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)
|
[33] |
Lin Q, Zhao Y, Duan W, et al. Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2. Chinese Physics B, 2020, 29(12): 125201
|
[34] |
林启富. 交直流多弧等离子体特性及其应用研究. [博士论文]. 合肥: 中国科学技术大学, 2020 (Lin Qifu. Study on characteristics and applications of AC/DC multi-arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese)Lin Qifu. Study on characteristics and applications of AC/DC multi-arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese)
|
[35] |
周法. 交流电弧等离子体炬及其应用的研究进展. 空气动力学报, 2022, 40(5): 15-29 (Zhou Fa. Research progress on AC arc plasma torch and its application. Acta Aerodynamica Sinica, 2022, 40(5): 15-29 (in Chinese)Zhou Fa. Research progress on AC arc plasma torch and its application. Acta Aerodynamica Sinica, 2022, 40(5): 15-29 (in Chinese)
|
[36] |
Bonet C, Foex M, Munz R, et al. Decomposition of various materials used as electrodes in three-phase alternating current plasma generator. Journal of Physics D: Applied Physics, 1976, 9(12): L141-L147 doi: 10.1088/0022-3727/9/12/002
|
[37] |
Gold D, Bonet C. A 100-kW three-phase AC plasma furnace for spheroidization of aluminum silicate particles. Plasma Chemistry and Plasma Processing, 1981, 1(2): 161-178 doi: 10.1007/BF00564578
|
[38] |
Rehmet C, Fabry F, Rohani V, et al. Unsteady state analysis of free-burning arcs in a 3-phase AC plasma torch: comparison between parallel and coplanar electrode configurations. Plasma Sources Science and Technology, 2014, 23(6): 065011 doi: 10.1088/0963-0252/23/6/065011
|
[39] |
Rehmet C, Fabry F, Rohani V, et al. A comparison between MHD modeling and experimental results in a 3-phase AC arc plasma torch: Influence of the electrode tip geometry. Plasma Chemistry and Plasma Processing, 2014, 34(4): 975-996 doi: 10.1007/s11090-014-9536-2
|
[40] |
Rehmet C, Rohani V, Cauneau F, et al. 3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch. Plasma Chemistry and Plasma Processing, 2013, 33(2): 491-515 doi: 10.1007/s11090-013-9438-8
|
[41] |
Rehmet C, Fabry F, Rohani V, et al. High speed video camera and electrical signal analyses of arcs behavior in a 3-phase AC arc plasma torch. Plasma Chemistry and Plasma Processing, 2013, 33(4): 779-796 doi: 10.1007/s11090-013-9458-4
|
[42] |
Rutberg PG, Popov SD, Surov AV, et al. The investigation of an electric arc in the long cylindrical channel of the powerful high-voltage AC plasma torch. Journal of Physics: Conference Series, 2012, 406(1): 012028
|
[43] |
Rutberg PG, Safronov AA, Popov SD, et al. Multiphase stationary plasma generators working on oxidizing media. Plasma Physics and Controlled Fusion, 2005, 47(10): 1681-1696 doi: 10.1088/0741-3335/47/10/006
|
[44] |
Watanabe T, Yatsuda K, Yao Y, et al. Innovative in-flight glass-melting technology using thermal plasmas. Pure and Applied Chemistry, 2010, 82(6): 1337-1351 doi: 10.1351/PAC-CON-09-09-19
|
[45] |
Yao Y, Yatsuda K, Watanabe T, et al. Characteristics of multi-phase alternating current arc for glass in-flight melting. Plasma Chemistry and Plasma Processing, 2009, 29(5): 333-346 doi: 10.1007/s11090-009-9182-2
|
[46] |
Yao Y, Yatsuda K, Watanabe T, et al. Investigation on in-flight melting behavior of granulated alkali-free glass raw material under different conditions with 12-phase AC arc. Chemical Engineering Journal, 2008, 144(2): 317-323 doi: 10.1016/j.cej.2008.06.039
|
[47] |
Yao Y, Hossain MM, Watanabe T, et al. A multi-phase AC arc discharge and its application in in-flight thermal treatment of raw glass powders. Chemical Engineering Journal, 2008, 139(2): 390-397 doi: 10.1016/j.cej.2007.11.016
|
[48] |
Matsuura T, Taniguchi K, Watanabe T. A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes. Thin Solid Films, 2007, 515(9): 4240-4246 doi: 10.1016/j.tsf.2006.02.086
|
[49] |
Tanaka M, Tsuruoka Y, Liu Y, et al. Stability analysis of multi-phase AC arc discharge for in-flight glass melting. Current Applied Physics, 2011, 11(5): S35-S39 doi: 10.1016/j.cap.2011.05.037
|
[50] |
郭恒. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 1-10 (Guo Heng. Numerical simulation of plasma jet characteristics in six phase AC arc discharge at sub atmospheric pressure. Acta Physica Sinica, 2018, 67(5): 1-10 (in Chinese)Guo Heng. Numerical simulation of plasma jet characteristics in six phase AC arc discharge at sub atmospheric pressure. Acta Physica Sinica, 2018, 67(5): 1-10 (in Chinese)
|
[51] |
苏运波. 六相交流电弧放电装置电源系统设计及性能测试. 机械工程与自动化, 2016, 4: 181-183 (Su Yunbo. Design and performance testing of the power supply system for a six phase ac arc discharge device. Mechanical Engineering and Automation, 2016, 4: 181-183 (in Chinese)Su Yunbo. Design and performance testing of the power supply system for a six phase ac arc discharge device. Mechanical Engineering and Automation, 2016, 4: 181-183 (in Chinese)
|
[52] |
苏运波. 多相交流电弧放电实验装置关键技术的研究. [硕士论文]. 唐山: 华北理工大学, 2017 (Su Yunbo. Study on key techniques of multi-phase ac arc discharge experiment devic. [Master Thesis]. Tangshan: North China University of Science and Technology, 2017 (in Chinese)Su Yunbo. Study on key techniques of multi-phase ac arc discharge experiment devic. [Master Thesis]. Tangshan: North China University of Science and Technology, 2017 (in Chinese)
|
[53] |
Guo H, Su YB, Li HP, et al. Characteristics of meso-pressure six-phase alternative current arc discharge plasma jet: Experiments. Acta Physica Sinica, 2018, 67(4): 045201
|
[54] |
Harry JE, Knight R. Investigation of the intensity distribution of large volume multiple-arc discharges. Journal of Physics D: Applied Physics, 1984, 17(2): 343-350 doi: 10.1088/0022-3727/17/2/018
|
[55] |
Harry JE, Knight R. Simultaneous operation of electric arcs from the same supply. IEEE Transactions on Plasma Science, 1981, 9(4): 248-254 doi: 10.1109/TPS.1981.4317432
|
[56] |
Harry JE, Hobson L. Production of a large volume discharge using a multiple arc system. IEEE Transactions on Plasma Science, 1979, 7(3): 157-162 doi: 10.1109/TPS.1979.4317221
|
[57] |
Harry JE, Hobson L. A multiple-arc system. Journal of Physics E:Scientific Instruments, 1979, 12(5): 357-358 doi: 10.1088/0022-3735/12/5/006
|
[58] |
Leng X, Zhang G, Wu L. The characteristic of twin-electrode TIG coupling arc pressure. Journal of Physics D: Applied Physics, 2006, 39(6): 1120-1126 doi: 10.1088/0022-3727/39/6/017
|
[59] |
Van Der Walt IJ, Havenga JL, Nel JT. A thermal non-transfer arc V-type torch plasma//2008 IEEE 35th International Conference on Plasma Science, 2008: 1-1
|
[60] |
Liu B, Kikuchi M, Li HP, et al. Dual torch plasma arc furnace for medical waste treatment. Plasma Science & Technology, 2007, 9(6): 709-712
|
[61] |
Chen L, Meng Y, Shen J, et al. Coal pyrolysis to acetylene using dc hydrogen plasma torch: Effects of system variables on acetylene concentration. Journal of Physics D: Applied Physics, 2009, 42(5): 055505 doi: 10.1088/0022-3727/42/5/055505
|
[62] |
Cheron BG, Bultel A, Delair L. Experimental study of a double arc nitrogen plasma: Static and dynamic behavior. IEEE Transactions on Plasma Science, 2007, 35(2): 498-508 doi: 10.1109/TPS.2007.892698
|
[63] |
王城. 扩散电弧等离子体的实验研究及高强度光源的初步研究. [博士论文]. 合肥: 中国科学技术大学, 2015 (Wang Cheng. Experimental study of diffusearc plasma and application on high-intensity light source. [PhD Thesis]. Hefei: University of Science and Technology of China, 2015 (in Chinese)Wang Cheng. Experimental study of diffusearc plasma and application on high-intensity light source. [PhD Thesis]. Hefei: University of Science and Technology of China, 2015 (in Chinese)
|
[64] |
Pfender E. Multiple arc plasma device with continuous gas jet. US: WO86/02024 [P], 1984
|
[65] |
Young RM, Pfender E. A novel approach for introducing particulate matter into thermal plasmas: The triple-cathode arc. Plasma Chemistry and Plasma Processing, 1989, 9(4): 465-481 doi: 10.1007/BF01023914
|
[66] |
Schein J, Richter M, Landes KD, et al. Tomographic Investigation of plasma jets produced by multielectrode plasma torches. Journal of Thermal Spray Technology, 2008, 17(3): 338-343 doi: 10.1007/s11666-008-9186-0
|
[67] |
Schein J, Zierhut J, Dzulko M, et al. Improved plasma spray torch stability through multi-electrode design. Contributions to Plasma Physics, 2007, 47(7): 498-504 doi: 10.1002/ctpp.200710064
|
[68] |
Marantz, DR, Herman H. Plasma spray gun and method of use. US: 5144110 [P], 1992
|
[69] |
Marantz DR, Herman H. Plasma generating apparatus and method. US: 4982067 [P], 1991
|
[70] |
Ross DA. Plasma jet converging system. US: 5556558 [P], 1994
|
[71] |
Ross DA. Plasma torch with axial reactant feed. US: 5008511 [P], 1991
|
[72] |
Marques JL, Forster G, Schein J. Multi-electrode plasma torches: motivation for development and current state-of-the-art. The Open Plasma Physics Journal, 2009, 2(1): 89-98
|
[73] |
Berghaus JO, Marple B, Moreau C. Suspension plasma spraying of nanostructured WC-12Co coatings. Journal of Thermal Spray Technology, 2006, 15(4): 676-681 doi: 10.1361/105996306X147072
|
[74] |
Zhang Z, Wang C, Sun Q, et al. Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch. Plasma Science and Technology, 2021, 23(7): 075404 doi: 10.1088/2058-6272/abfd19
|
[75] |
Wang C, Zhang Z, Xia W, et al. Direct observation of anode arc root behaviors in a non-transferred arc plasma device with multiple cathodes. Plasma Chemistry and Plasma Processing, 2017, 37(2): 371-382 doi: 10.1007/s11090-016-9782-6
|
[76] |
Wang C, Zhang Z, Cui H, et al. Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes. Chinese Physics B, 2017, 26(8): 085207 doi: 10.1088/1674-1056/26/8/085207
|
[77] |
Wang C, Cui H, Zhang Z, et al. Production of long, laminar plasma jets at atmospheric pressure with multiple cathodes. Contributions to Plasma Physics, 2017, 57(2): 58-66 doi: 10.1002/ctpp.201600073
|
[78] |
Zhang D, Zheng L, Hu X, et al. Numerical studies of arc plasma generation in single cathode and three-cathode plasma torch and its impact on plasma spraying. International Journal of Heat and Mass Transfer, 2016, 98: 508-522 doi: 10.1016/j.ijheatmasstransfer.2016.03.038
|
[79] |
胡明. 磁旋转直流电弧等离子体炬的实验研究. [博士论文]. 合肥: 中国科学技术大学, 2014 (Hu Ming. Experimental study on magneticrotation arc plasma torch. [PhD Thesis]. Hefei: University of Science and Technology of China, 2014 (in Chinese)Hu Ming. Experimental study on magneticrotation arc plasma torch. [PhD Thesis]. Hefei: University of Science and Technology of China, 2014 (in Chinese)
|
[80] |
Szente RN, Munz RJ, Drouet MG. Cathode erosion in inert-gases-the importance of electrode contamination. Plasma Chemistry and Plasma Processing, 1989, 9(1): 121-132 doi: 10.1007/BF01015830
|
[81] |
Szente RN, Munz RJ, Drouet MG. Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen. Journal of Physics D: Applied Physics, 1988, 21(6): 909-913 doi: 10.1088/0022-3727/21/6/008
|
[82] |
Szente RN, Munz RJ, Drouet MG. Effect of the arc velocity on the cathode erosion rate in argon nitrogen mixtures. Journal of Physics D: Applied Physics, 1987, 20(6): 754-756 doi: 10.1088/0022-3727/20/6/010
|
[83] |
Szente RN, Munz RJ, Drouet MG. The effect of low concentrations of a polyatomic-gas in argon on erosion on copper cathodes in a magnetically rotated arc. Plasma Chemistry and Plasma Processing, 1987, 7(3): 349-364 doi: 10.1007/BF01016522
|
[84] |
Meng Q, Wang Y, Zhang L. Irradiance characteristics and optimization design of a large-scale solar simulator. Solar Energy, 2011, 85(9): 1758-1767 doi: 10.1016/j.solener.2011.04.014
|
[85] |
Guesdon C, Alxneit I, Tschudi HR, et al. PSI's 1 kW imaging furnace—A tool for high-temperature chemical reactivity studies. Solar Energy, 2006, 80(10): 1344-1348 doi: 10.1016/j.solener.2005.04.028
|
[86] |
Li H, Ma Q, Li LC, et al. Imaging of behavior of multiarc roots of cathode in a dc arc discharge. IEEE Transactions on Plasma Science, 2005, 33(2): 404-405 doi: 10.1109/TPS.2005.844993
|
[87] |
Minoo H, Arsaoui A, Bouvier A. An analysis of the cathode region of a vortex-stabilized arc plasma generator. Journal of Physics D: Applied Physics, 1995, 28(8): 1630-1648 doi: 10.1088/0022-3727/28/8/012
|
[88] |
Zha J, Zhang X, Xu Z, et al. Phenomena of multiarc roots and parallel arcs in a large-scale magnetically rotating arc plasma generator. IEEE Transactions on Plasma Science, 2013, 41(3): 601-605 doi: 10.1109/TPS.2013.2243474
|
[89] |
Desaulnier S, Meunier JL. A study of magnetically rotating arc stability using fluctuations in voltage, velocity and emission line intensity. Journal of Physics D: Applied Physics, 1995, 28(12): 2505-2513 doi: 10.1088/0022-3727/28/12/017
|
[90] |
Heling Z, Zhipeng Z, Weidong X. Investigation of a novel large area dispersed arc plasma source with time-resolved ICCD imaging. IEEE Transactions on Plasma Science, 2008, 36(4): 1082-1083 doi: 10.1109/TPS.2008.917775
|
[91] |
Heling Z, Cun LL, Liang C, et al. ICCD Imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source. IEEE Transactions on Plasma Science, 2008, 36(4): 1084-1085 doi: 10.1109/TPS.2008.923895
|
[92] |
Li LC, Xia WD, Zhou HL, et al. Experimental observation and numerical analysis of arc plasmas diffused by magnetism. The European Physical Journal D, 2007, 47(1): 75-81
|
[93] |
Xia W, Li L, Zhao Y, et al. Dynamics of large-scale magnetically rotating arc plasmas. Applied Physics Letters, 2006, 88(21): 1501
|
[94] |
Wang C, Li W, Zhang X, et al. Evolution of magnetically rotating arc into large area arc plasma. Chinese Physics B, 2015, 24(6): 065206 doi: 10.1088/1674-1056/24/6/065206
|
[95] |
Tanaka M, Liu Y, Tsuruoka Y, et al. Experimental investigation of in-flight melting by hybrid heating of multi-phase alternating current arc with oxygen burner for alkali-free glass raw materials. Thin Solid Films, 2012, 523: 67-71 doi: 10.1016/j.tsf.2012.07.064
|
[96] |
Yao YC, Watanabe T, Yatsuda K. Application and characterization of 12-phase AC arc for glass in-flight melting. Advanced Materials Research, 2012, 443(1): 637-642
|
[97] |
Liu Y, Tanaka M, Ikeba T, et al. Fluctuation measurement of multi-phase AC arc and in-flight particle temperature. Journal of Chemical Engineering of Japan, 2013, 46(10): 672-676 doi: 10.1252/jcej.13we098
|
[98] |
Liu Y, Tanaka M, Choi S, et al. Investigation of in-flight glass melting by controlling the high-temperature region of multiphase AC arc plasma. International Journal of Applied Glass Science, 2014, 5(4): 443-451 doi: 10.1111/ijag.12081
|
[99] |
Watanabe T, Liu Y, Tanaka M. Investigation of electrode phenomena in an innovative thermal plasma process for glass melting. Plasma Chemistry and Plasma Processing, 2014, 34(3): 443-456 doi: 10.1007/s11090-014-9530-8
|
[100] |
Hu YH, Meng X, Huang HJ, et al. A novel anode structure for diffuse arc anode attachment. Journal of Physics D: Applied Physics, 2021, 54(36): 01
|
[101] |
Niu C, Meng X, Huang H, et al. Numerical simulation of the effects of protrusion on DC arc anode attachment. Plasma Science and Technology, 2021, 23(10): 104006 doi: 10.1088/2058-6272/ac125e
|
[102] |
Sun JH, Sun SR, Niu C, et al. Non-equilibrium modeling on the plasma-electrode interaction in an argon DC plasma torch. Journal of Physics D: Applied Physics, 2021, 54(46): 465202 doi: 10.1088/1361-6463/ac122a
|
[103] |
Hu YH, Meng X, Huang HJ, et al. Experimental study on the effect of argon shielding gas on the suppression of nitrogen arc anode ablation. Journal of Physics D: Applied Physics, 2022, 55(37): 375202 doi: 10.1088/1361-6463/ac7bb8
|
[104] |
Harry JE, Guile AE. Constricted or diffuse arcs rotating in high magnetic fields in air at atmospheric pressure. Proceedings of the Institution of Electrical Engineers, 1968, 115(7): 1019 doi: 10.1049/piee.1968.0184
|
[105] |
Chen T, Wang C, Xia WD. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc. Journal of Physics D: Applied Physics, 2016, 49(8): 085202 doi: 10.1088/0022-3727/49/8/085202
|
[106] |
Hu MB, Dang SC, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chinese Physics B, 2015, 24(7): 074502 doi: 10.1088/1674-1056/24/7/074502
|
[107] |
Zhang XN, Murphy AB, Li HP, et al. Combined diffusion coefficients for a mixture of three ionized gases. Plasma Sources Science and Technology, 2014, 23(6): 065044 doi: 10.1088/0963-0252/23/6/065044
|
[108] |
查俊. 磁旋转电弧和分散电弧等离子体的实验研究. [博士论文]. 合肥: 中国科学技术大学, 2013 (Zha Jun. The experimental study of the magnetically rotating arc and the dispersed arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese)Zha Jun. The experimental study of the magnetically rotating arc and the dispersed arc plasma. [PhD Thesis]. Hefei: University of Science and Technology of China, 2013 (in Chinese)
|
[109] |
Bai B, Zha J, Zhang X, et al. Simulation of magnetically dispersed arc plasma. Plasma Science and Technology, 2012, 14(2): 118-121 doi: 10.1088/1009-0630/14/2/07
|
[110] |
Dong WX, Ling HZ, Peng ZZ, et al. Evolution of cathodic Arc roots in a large-scale magnetically rotating arc plasma. IEEE Transactions on Plasma Science, 2008, 36(4): 1048-1049 doi: 10.1109/TPS.2004.924569
|
[111] |
Wang C, Li W, Zhang X, et al. Observation of thermal cathodic hot spots in a magnetically rotating arc plasma generator. IEEE Transactions on Plasma Science, 2015, 43(10): 3716-3720 doi: 10.1109/TPS.2015.2474142
|
[112] |
Wang C, Cui HC, Li WW, et al. Production of a large area diffuse arc plasma with multiple cathode. Chinese Physics B, 2017, 26(2): 025202 doi: 10.1088/1674-1056/26/2/025202
|
[113] |
Huang HJ, Pan WX, Wu CK. Aerodynamic dispersion of anode arc attachment through a converging-diverging nozzle. IEEE Transactions on Plasma Science, 2019, 47(1): 847-852 doi: 10.1109/TPS.2018.2880246
|
[114] |
Pan W, Chen L, Meng X, et al. Sufficiently diffused attachment of nitrogen arc by gasdynamic action. Theoretical and Applied Mechanics Letters, 2016, 6(6): 293-296 doi: 10.1016/j.taml.2016.09.001
|
[115] |
Chen D, Dambra C, Dorfman M. Deposition, microstructure and thermal cycling performance of strain-tolerant thermal barrier coatings. Journal of Thermal Spray Technology, 2022, 32(4): 1108-1114
|
[116] |
Babu A, Dzhurinskiy D, Dautov S, et al. Structure and electrochemical behavior of atmospheric plasma sprayed Cr3C2-NiCr cermet composite coatings. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106105
|
[117] |
Mauer G, Vaßen R, Stöver D. Preliminary study on the TriplexPro™-200 gun for atmospheric plasma spraying of yttria-stabilized zirconia. Surface and Coatings Technology, 2008, 202(18): 4374-4381
|
[118] |
Tarasi F, Alebrahim E, Dolatabadi A, et al. A comparative study of YSZ suspensions and coatings. Coatings, 2019, 9(3): 188 doi: 10.3390/coatings9030188
|
[119] |
Wang C, Sun L, Dai X, et al. Continuous synthesis of graphene nano-flakes by a magnetically rotating arc at atmospheric pressure. Carbon, 2019, 148: 394-402 doi: 10.1016/j.carbon.2019.04.015
|
[120] |
Chen X, Wang C, Song M, et al. The morphological transformation of carbon materials from nanospheres to graphene nanoflakes by thermal plasma. Carbon, 2019, 155: 521-530 doi: 10.1016/j.carbon.2019.08.077
|
[121] |
Zhang Z, Wang C, Sun Q, et al. Spheroidization of tungsten powder by a DC arc plasma generator with multiple cathodes. Plasma Chemistry and Plasma Processing, 2022, 42(4): 939-956 doi: 10.1007/s11090-022-10250-6
|
[122] |
马杰. 磁旋转弧等离子体裂解煤制乙炔研究. [博士论文]. 杭州: 浙江大学, 2016 (Ma Jie. Pyrolysis of coal to acetylene by magnetically rotating plasma arc. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese)Ma Jie. Pyrolysis of coal to acetylene by magnetically rotating plasma arc. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese)
|
[123] |
许凯. 旋转弧等离子体裂解煤制乙炔结焦规律及清焦技术研究. [硕士论文]. 杭州: 浙江大学, 2019 (Xu Kai. Coking rules and decoking technology of coal pyrolysis to acetylene in rotating arc plasma. [Master Thesis]. Hangzhou: Zhejiang University, 2019 (in Chinese)Xu Kai. Coking rules and decoking technology of coal pyrolysis to acetylene in rotating arc plasma. [Master Thesis]. Hangzhou: Zhejiang University, 2019 (in Chinese)
|
[124] |
Song M, Wang C, Zhu C, et al. An effective fabrication and highly tunable microwave absorption of nitrogen-doped graphene. Diamond and Related Materials, 2022, 129: 109348 doi: 10.1016/j.diamond.2022.109348
|
[125] |
Bond RL, Ladner WR, Mcconnell GIT, et al. Production of acetylene from coal, using a plasma jet. Nature, 1963, 200(491): 1313
|
[126] |
Nicholson R, Littlewood K. Plasma pyrolysis of coal. Nature, 1972, 236(5347): 397 doi: 10.1038/236397a0
|
[127] |
Xie KC, Lu YK, Tian YJ, et al. Study of coal conversion in an arc plasma jet. Energy Sources, 2002, 24(12): 1093-1098 doi: 10.1080/00908310290087012
|
[128] |
Bao WR, Chang LP, Lu YK. Study on main factors influencing acetylene formation during coal pyrolysis in arc plasma. Process Safety and Environmental Protection, 2006, 84(B3): 222-226
|