EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏性牛顿流体液滴撞击干燥或预湿网面的实验研究

宗绍强 徐龙 郝继光

宗绍强, 徐龙, 郝继光. 黏性牛顿流体液滴撞击干燥或预湿网面的实验研究. 力学学报, 2023, 55(11): 2293-2303 doi: 10.6052/0459-1879-23-344
引用本文: 宗绍强, 徐龙, 郝继光. 黏性牛顿流体液滴撞击干燥或预湿网面的实验研究. 力学学报, 2023, 55(11): 2293-2303 doi: 10.6052/0459-1879-23-344
Zong Shaoqiang, Xu Long, Hao Jiguang. Experimental study on viscous newtonian droplet impacts on dry or pre-wetted meshes. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2293-2303 doi: 10.6052/0459-1879-23-344
Citation: Zong Shaoqiang, Xu Long, Hao Jiguang. Experimental study on viscous newtonian droplet impacts on dry or pre-wetted meshes. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2293-2303 doi: 10.6052/0459-1879-23-344

黏性牛顿流体液滴撞击干燥或预湿网面的实验研究

doi: 10.6052/0459-1879-23-344
基金项目: 国家自然科学基金项目(12072032), 国家重点研发计划项目(No. 2018YFF0300804)资助
详细信息
    通讯作者:

    郝继光, 副教授, 主要研究方向为航天发射技术、高速界面流动. E-mail: hjgizq@bit.edu.cn

  • 中图分类号: O35

EXPERIMENTAL STUDY ON VISCOUS NEWTONIAN DROPLET IMPACTS ON DRY OR PRE-WETTED MESHES

  • 摘要: 液滴撞击网面现象广泛存在于自然界和一系列应用中, 液滴撞网后会穿透破碎产生二次液滴或不破碎全部附着在网面上, 两种情况下都会残留液体在网面而形成预湿, 影响后续撞击结果, 但前人研究集中于低黏性液滴撞击干燥网面, 黏性牛顿流体液滴撞击干燥或预湿网面的演化与机理仍有待探索. 本文采用高速阴影成像技术, 研究了黏性液滴(甘油水溶液)撞击干燥和预湿网面形成液指和破碎的演化规律, 考虑了网面结构尺寸、液滴黏性及撞击前网面上预湿液膜厚度对撞击结果的影响. 实验结果表明, 液滴撞击干燥网面后形成液指的最大长度随网孔宽度降低、液滴黏性增加而减小; 液滴黏性增加、网孔宽度减小均会抑制液滴对干燥网面的完全穿透; 预湿液膜高度的增加抑制液滴对网面的完全穿透, 并使不完全穿透时形成液指的最大长度减小. 建立了考虑液滴黏性、网孔宽度和网面预湿的液滴撞击网面后不完全穿透时形成液指的最大长度预测模型, 以及出现完全穿透时的临界参数理论预测模型, 模型预测结果均与实验结果吻合良好.

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental set up

    图  2  不同黏性液滴撞击网面的演化过程

    Figure  2.  Evolution of droplets with various viscosities impacting meshes of the same parameters

    图  3  黏性液滴撞击不同网面的演化过程

    Figure  3.  Evolution of viscous droplets impacting meshes of various parameters

    图  4  最大液指长度随液滴黏性和网目数变化曲线

    Figure  4.  Variations of maximum liquid finger length as functions of droplet viscosity and mesh parameter

    图  5  不同速度液滴撞击网面的演化过程

    Figure  5.  Evolution of droplets with various velocities impacting meshes of the same parameters

    图  6  最大液指长度随液滴黏性和速度变化曲线

    Figure  6.  Variations of maximum liquid finger length as functions of droplet viscosity and velocity

    图  7  φ1的实验值与拟合经验公式

    Figure  7.  Experimentally-determined values and fitted empirical formula of φ1

    图  8  φ2的实验值与拟合经验公式

    Figure  8.  Experimentally-determined values and fitted empirical formula of φ2

    图  9  不同黏性液滴撞击网面的演化过程

    Figure  9.  Evolution of droplets with various viscosities impacting meshes of the same parameters

    图  10  黏性液滴撞击不同网面的演化过程

    Figure  10.  Evolution of viscous droplets impacting meshes of various parameters

    图  11  完全穿透临界韦伯数随临界毛细数的变化

    Figure  11.  Variations of threshold We as a function of threshold Ca for completely penetration

    图  12  液滴撞击预湿网面的演化过程

    Figure  12.  Evolution of droplets impacting pre-wetted meshes

    图  13  最大液指长度随液滴黏性和预湿高度的变化

    Figure  13.  Variations of maximum liquid finger length as functions of droplet viscosity and prewetted height

    图  14  液滴撞击前及液滴与液膜融合后流动示意图

    Figure  14.  Sketch of the flow configuration (a) before the impacts and (b) after coalescence of the impacting droplet with the liquid trapped in the mesh.

    图  15  液滴撞击预湿网面的演化过程

    Figure  15.  Evolution of droplets impacting prewetted meshes

    图  16  5.01 mPa·s液滴撞击120目网面的结果相图

    Figure  16.  Phase diagram illustrating the outcome of 5.01 mPa·s droplets impacting 60 mu meshes

    图  17  5.01 mPa·s液滴撞击80目网面的结果相图

    Figure  17.  Phase diagram illustrating the outcome of 5.01 mPa·s droplets impacting 60 mu meshes

    图  18  5.01 mPa·s液滴撞击60目网面的结果相图

    Figure  18.  Phase diagram illustrating the outcome of 5.01 mPa·s droplets impacting 60 mu meshes

    图  20  80.16 mPa·s液滴撞击60目网面的结果相图

    Figure  20.  Phase diagram illustrating the outcome of 80.16 mPa·s droplets impacting 60 mu meshes

    图  19  36.94 mPa·s液滴撞击60目网面的结果相图

    Figure  19.  Phase diagram illustrating the outcome of 36.94 mPa·s droplets impacting 60 mu meshes

    表  1  甘油水液滴的物理属性(25°C)

    Table  1.   The physical properties of aqueous glycerol solutions at 25°C

    ψ/wt%μ/(mPa·s)ρ/(kg·m−3)σ/(mN·m−1)
    505.011113.4168.05
    6411.541150.6766.95
    7018.071167.4166.85
    7527.731181.7466.54
    7836.941190.5066.16
    8045.371196.4266.77
    81.553.351200.9065.43
    8363.161205.4165.52
    8471.061208.4366.20
    8580.161211.4866.13
    下载: 导出CSV

    表  2  网面参数

    Table  2.   The mesh parameters

    Nmω/μmd/μm
    60250160
    80200140
    100150125
    12012590
    1808056
    下载: 导出CSV

    表  3  甘油水溶液在网面上的静态接触角

    Table  3.   The equilibrium contact angles of aqueous glycerol solutions droplet on the mesh

    Nmθeq/(°)
    (μ = 5.01 mPa·s)
    θeq/(°)
    (μ = 80.16 mPa·s)
    60125.1128.8
    80123.0124.2
    100119.5124.8
    120114.8126.7
    180125.3119.8
    下载: 导出CSV
  • [1] Brunet P, Lapierre F, Zoueshtiagh F, et al. To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid. Applied Physics Letters, 2009, 95: 254102 doi: 10.1063/1.3275709
    [2] Hsu CF, Ashgriz N. Impaction of a droplet on an orifice plate. Physics of Fluids, 2004, 16: 400-411 doi: 10.1063/1.1637036
    [3] Soto D, Girard HL, Helloco AL, et al. Droplet fragmentation using a mesh. Physical Review Fluids, 2018, 3: 083602 doi: 10.1103/PhysRevFluids.3.083602
    [4] Kooij SA, Moqaddam AM, Goede TCD, et al. Sprays from droplets impacting a mesh. Journal of Fluid Mechanics, 2019, 871: 489-509 doi: 10.1017/jfm.2019.289
    [5] Wang L, Wu X, Yu W, et al. Numerical study of droplet fragmentation during impact on mesh screens. Microfluidics and Nanofluidics. 2019, 23: 136.
    [6] Yarin AL. Novel nanofluidic and microfluidic devices and their applications. Current Opinion in Chemical Engineering, 2020, 29: 17-25 doi: 10.1016/j.coche.2020.02.004
    [7] Brewer SA, Willis CR. Structure and oil repellency: Textiles with liquid repellency to hexane. Applied Surface Science, 2008, 254: 6450-6454 doi: 10.1016/j.apsusc.2008.04.053
    [8] Kim H, Park Y, Kim H, et al. Critical heat flux enhancement by single layered metal wire mesh with micro and nano-sized pore structures. International Journal of Heat and Mass Transfer, 2017, 115: 439-449 doi: 10.1016/j.ijheatmasstransfer.2017.08.066
    [9] Modak CD, Kumar A, Tripathy A, et al. Drop impact printing. Nature Communications, 2020, 11: 4327 doi: 10.1038/s41467-020-18103-6
    [10] Lohse D. Fluid Mech: Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382
    [11] He P, Cao J, Ding H, et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Applied Materials & Interfaces, 2019, 11: 32225-32234
    [12] Al-Dughaither AS, Ibrahim AA, Al-Masry WA. Investigating droplet separation efficiency in wire-mesh mist eliminators in bubble column. Journal of Saudi Chemical Society, 2010, 14: 331-339 doi: 10.1016/j.jscs.2010.04.001
    [13] Wang B, Guo ZG. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Applied Physics Letters, 2013, 103: 063704 doi: 10.1063/1.4817922
    [14] Dunderdale G, Urata C, Sato T, et al. Continuous, high-speed, and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Applied Materials & Interfaces, 2015, 7(34): 18915-18919
    [15] Pi P, Hou K, Zhou C, et al. A novel superhydrophilic-underwater superoleophobic Cu2 S coated copper mesh for efficient oil-water separation. Materials Letters, 2016, 182: 68-71 doi: 10.1016/j.matlet.2016.06.087
    [16] Wen R, Xu S, Zhao D, et al. Sustaining enhanced condensation on hierarchical mesh-covered surfaces, National Science Review, 2018, 5: 878-887.
    [17] Tudu BK, Kumar A. Robust and durable superhydrophobic steel and copper meshes for separation of oil-water emulsions. Progress in Organic Coating, 2019, 133: 316-324.
    [18] 张星, 刘金鑫, 张海峰等. 防护口罩用非织造滤料的制备技术与研究现状. 纺织学报, 2020, 41(3): 168-174 (Zhang xing, Liu jinxin, Zhang haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks. Journal of Textile Research, 2020, 41(3): 168-174 (in Chinese)

    Zhang xing, Liu jinxin, Zhang haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks. Journal of Textile Research, 2020, 41(03): 168-174(in Chinese)
    [19] Bagchi S, Basu S, Chaudhuri S, et al. Penetration and secondary atomization of droplets impacted on wet facemasks. Physical Review Fluids, 2021, 6: 110510 doi: 10.1103/PhysRevFluids.6.110510
    [20] Sharma S, Pinto R, Saha A, et al. On secondary atomization and blockage of surrogate cough droplets in single- and multilayer face masks. Science Advances, 2021, 7: eabf0452 doi: 10.1126/sciadv.abf0452
    [21] Solano T, Ni C, Mittal R, et al. Perimeter leakage of face masks and its effect on the mask's efficacy. Physics of Fluids, 2022, 34: 051902 doi: 10.1063/5.0086320
    [22] Liu Y, Yan X, Wang Z. Droplet dynamics on slippery surfaces: Small droplet, big impact. Biosurface and Biotribology, 2019, 5: 35-45 doi: 10.1049/bsbt.2019.0004
    [23] Xu L, Zhang WW, Nagel SR. Drop splashing on a dry smooth surface. Physical Review Letters, 2005, 94: 184505.
    [24] Yarin AL. Drop impact dynamics: Splashing, spreading, receding, bouncing . . . . Annual Review of Fluid Mechanics, 2006, 38: 159-192.
    [25] Thoroddsen ST, Etoh TG, Takehara K, High-speed imaging of drops and bubbles. Annual Review of Fluid Mechanics, 2008, 40: 257-285.
    [26] Riboux G, Gordillo JM. Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing, Physical Review Letters, 2014, 113: 024507.
    [27] Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. Nature Physics, 2014, 10: 515-519 doi: 10.1038/nphys2980
    [28] Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2: 044018 doi: 10.1103/PhysRevApplied.2.044018
    [29] Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016, 48: 365-391 doi: 10.1146/annurev-fluid-122414-034401
    [30] Liang G, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103-126 doi: 10.1016/j.ijheatmasstransfer.2016.10.031
    [31] Hao J, Lu J, Lee L, et al. Droplet splashing on an inclined surface, Physical Review Letters, 2019, 122: 054501.
    [32] 孙姣, 周维, 蔡润泽等. 垂直壁面附近上升单气泡的弹跳动力学研究. 力学学报, 2020, 52(1): 1-11 (Sun Jiao, Zhou Wei, Cai Runze, et al. The bounce dynamics of a rising single bubble near a vertical wall. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11 (in Chinese) doi: 10.6052/0459-1879-19-228

    Sun Jiao, Zhou Wei, Cai Runze, et al. The bounce dynamics of a rising single bubble near a vertical wall. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11 (in Chinese) doi: 10.6052/0459-1879-19-228
    [33] 万其文, 陈效鹏, 胡海豹等. 中性润湿平板上液膜的惯性收缩. 力学学报, 2022, 54(6): 1516-1522 (Wan Qiwen, Chen Xiaopeng, Hu Haibao, et al. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 (in Chinese)

    Wan Qiwen, Chen Xiaopeng, Hu Haibao, et al. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 (in Chinese)
    [34] Xu L, Ji W, Lu J, et al. Droplet impact on a prewetted mesh. Physical Review Fluids, 2021, 6: L101602 doi: 10.1103/PhysRevFluids.6.L101602
    [35] Ryu S, Sen P, Nam Y, et al. Water penetration through a superhydrophobic mesh during a drop impact. Physical Review Letters, 2017, 118: 014501 doi: 10.1103/PhysRevLett.118.014501
    [36] Sen U, Roy T, Chatterjee S, et al. Post-impact behavior of a droplet impacting on a permeable metal mesh with a sharp wettability step. Langmuir, 2019, 35: 12711-12721 doi: 10.1021/acs.langmuir.9b02486
    [37] Zhang G, Quetzeri-Santiago MA, Stone CA, et al. Droplet impact dynamics on textiles. Soft Matter, 2018, 14: 8182-8190 doi: 10.1039/C8SM01082J
    [38] Lorenceau É, Quéré D. Drops impacting a sieve. Journal of Colloid and Interface Science, 2003, 263: 244-249 doi: 10.1016/S0021-9797(03)00126-7
    [39] Sahu RP, Sinha-Ray S, Yarin A, et al. Drop impacts on electrospun nanofiber membranes. Soft Matter, 2012, 8: 3957-3970 doi: 10.1039/c2sm06744g
    [40] Boscariol C, Chandra S, Sarker D, et al. Drop impact onto attached metallic meshes: liquid penetration and spreading. Experiments in Fluids, 2018, 59: 1-13 doi: 10.1007/s00348-017-2450-7
    [41] Lembach AN, Tan HB, Roisman IV, et al. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir, 2010, 26: 9516-9523 doi: 10.1021/la100031d
    [42] Sahu R, Sett S, Yarin A, et al. Impact of aqueous suspension drops onto non-wettable porous membranes: Hydrodynamic focusing and penetration of nanoparticles. Colloids and Surfaces A, 2015, 467: 31-45 doi: 10.1016/j.colsurfa.2014.11.023
    [43] Bae C, Oh S, Han J, et al. Water penetration dynamics through a Janus mesh during drop impact. Soft Matter, 2020, 16: 6072-6081 doi: 10.1039/D0SM00567C
    [44] Sun L, Lin S, Pang B, et al. Water sprays formed by impinging millimeter-sized droplets on superhydrophobic meshes. Physics of Fluids, 2021, 33(9): 092111 doi: 10.1063/5.0058512
    [45] An T, Cho SJ, Choi W, et al. Preparation of stable superhydrophobic mesh with a biomimetic hierarchical Structure. Soft Matter, 2011, 7: 9867-9870 doi: 10.1039/c1sm06238g
    [46] Kumar A, Tripathy A, Modak CD, et al. Designing assembly of meshes having diverse wettability for reducing liquid ejection at terminal velocity droplet impact. Journal of Microelectromechanical Systems, 2018, 27: 866-873 doi: 10.1109/JMEMS.2018.2850903
    [47] Su M, Luo Y, Chu G, et al. Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure. Chemical Engineering Science, 2020, 219: 115593 doi: 10.1016/j.ces.2020.115593
    [48] Jamali M, Vahedi Tafreshi H, Pourdeyhimi B, et al. Penetration of liquid droplets into hydrophobic fibrous materials under enhanced gravity. Journal of Applied Physics, 2019, 125: 145304
    [49] Kumar A, Tripathy A, Nam Y, et al. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter, 2018, 14: 1571-1580 doi: 10.1039/C7SM02145C
    [50] de Goede TC, Moqaddam AM, Limpens K, et al. Droplet impact of Newtonian fluids and blood on simple fabrics: Effect of fabric pore size and underlying substrate. Physics of Fluids, 2021, 33: 033308 doi: 10.1063/5.0037123
    [51] Tang Y, Su M, Chu G, et al. Impact phenomena of liquid droplet passing through stainless steel wire mesh units. Chemical Engineering Science, 2019, 198: 144-154 doi: 10.1016/j.ces.2018.12.035
    [52] Xu J, Xie J, He X, et al. Water drop impacts on a single-layer of mesh screen membrane: Effect of water hammer pressure and advancing contact angles. Experimental Thermal and Fluid Science, 2017, 82: 83-93 doi: 10.1016/j.expthermflusci.2016.11.006
    [53] Xu L, Zong S, Hao J, et al. Droplet penetration through an inclined Mesh. Physics of Fluids, 2022, 34: 122105 doi: 10.1063/5.0126982
    [54] Blackwell BC, Nadhan AE, Ewoldt RH, et al. Impacts of yield-stress fluid drops on permeable mesh Substrates. Journal of Non-Newtonian Fluid Mechanics, 2016, 238: 107-114 doi: 10.1016/j.jnnfm.2016.06.012
    [55] Mehrizi A, Lin S, Sun L, et al. Spectacular behavior of a viscoelastic droplet impinging on a superhydrophobic mesh. Langmuir, 2022, 38: 6106-6115 doi: 10.1021/acs.langmuir.2c00385
    [56] Wang G, Gao J, Luo KH. Droplet impacting a superhydrophobic mesh array: Effect of liquid properties. Physical Review Fluids, 2020, 5: 123605 doi: 10.1103/PhysRevFluids.5.123605
    [57] Vontas K, Boscariol C, Andredaki M, et al. Droplet impact on suspended metallic meshes: effects of wettability, Reynolds and Weber numbers. Fluids, 2020, 5: 81 doi: 10.3390/fluids5020081
    [58] Abouelsoud M, Kherbeche A, Thoraval, MJ. Drop impact on a mesh - Viscosity effect. Journal of Colloid and Interface Science, 2023, 648: 37-45 doi: 10.1016/j.jcis.2023.04.099
    [59] Cheng N. Formula for the viscosity of a glycerol-water mixture. Chemical Engineering Research and Design, 2008, 47: 3285-3288 doi: 10.1021/ie071349z
    [60] Zang D, Wang X, Geng X, et al. Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matter, 2013, 9: 394-400 doi: 10.1039/C2SM26759D
    [61] Lin K, Zang D, Geng X, et al. Revisiting the effect of hierarchical structure on the super hydrophobicity. The European Physical Journal E, 2016, 39: 15 doi: 10.1140/epje/i2016-16015-8
    [62] Lin K, Zang D, Li X, et al. Superhydrophobic polytetrafluoroethylene surfaces by spray coating on porous and continuous substrates. The Royal Society of Chemistry, 2016, 6: 47096-47100
    [63] Eral HB, ’tMannetje DJCM, Oh JM. Contact angle hysteresis: a review of fundamentals and applications. Colloid and Polymer Science, 2013, 291: 247-260 doi: 10.1007/s00396-012-2796-6
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-12

目录

    /

    返回文章
    返回