A MAGNETIC SLIDING AIRFOIL FLUTTER ENERGY HARVESTER
-
摘要: 风致振动是自然界中普遍存在的一种现象, 并且蕴藏着巨大的可利用能源. 如何充分利用风致振动引起的结构大幅值响应进行能量俘获, 为微电子器件供电是能量俘获领域的一个难题. 为了高效俘获风致振动能量, 文章提出了一种磁力滑动式翼型颤振能量俘获器. 基于半经验非线性空气动力学模型并考虑与磁铁位置相关的机电耦合系数, 建立了该能量俘获器的动力学模型, 搭建了风洞实验平台, 制作了实验样机. 通过增加风速和降低风速的方式为能量俘获器提供两种不同的初始状态, 发现其具有两个临界风速(5.2 m/s 和 8.3 m/s), 降风速实验中在8.3 m/s风速下出现突跳现象. 在数值仿真中, 在6.8 m/s 和8.2 m/s 风速下出现了两个突跳点, 和一段多解区域. 分析了沉浮位移和电压响应, 发现沉浮位移以正弦形式响应, 输出电压以非正弦形式响应, 并出现明显的偶次谐波. 仿真的沉浮位移和电压输出波形与实验波形吻合较好, 验证了模型的准确性. 能量俘获器的均方根电压随电阻的增加而增加, 平均功率随电阻增加呈现先增加后降低的趋势. 分析了负载电阻对能量俘获性能的影响, 在8.6 m/s风速下, 实验中能量俘获器的负载电阻接近线圈内阻值时平均功率达到最大值7.5 mW. 文章为高效颤振式能量俘获器的设计提供了一种新方案, 可为驰振、涡振等其他形式的风致振动能量俘获器的设计提供参考.Abstract: Wind-induced vibrations are a common occurrence in nature and have great potential as a viable energy source. Effectively harvesting energy from the structure’s large amplitude response caused by wind-induced vibrations can power microelectronic devices, however, it is still a significant challenge in the field of energy harvesting. In order to efficiently harvest wind-induced vibration energy, this paper proposes a magnetic sliding airfoil flutter energy harvester. A dynamic model of the harvester is established based on a semi-empirical nonlinear aerodynamic model and the electromechanical coupling coefficient related to the position of the magnets. An experimental prototype is created and a wind tunnel test platform is built. In the experiment, by increasing and decreasing the wind speed, two different initial states are provided for the harvester, and two cut-in wind speeds are discovered 5.2 m/s and 8.3 m/s. A sudden jump phenomenon occurs at 8.3 m/s in downward sweeping wind speed experiments. Two jump points and a multi-solution region are found at 6.8 m/s and 8.2 m/s in numerical simulations. The displacement response exhibits a sine waveform, while the output voltage shows a non-sinusoidal waveform with significant even-order harmonics. The simulated plunging displacement and voltage output waveform closely match the experimental waveform, confirming the accuracy of the model. The output root mean square voltage of the energy harvester increases with the increase of resistance, and the average power shows an increasing-then-decreasing trend with resistance. An analysis is conducted on the impact of load resistance on energy harvesting performance. At the wind speed of 8.6 m/s, the average power in the experiment reaches its maximum value of 7.5 mW when the load resistance is close to the coil’s resistance. Overal, this article provides a new design approach for efficient flutter-based energy harvesters, offering a reference for the design of other forms of wind-induced vibration energy harvesters such as galloping-induced and vortex-induced vibration.
-
Key words:
- airfoil /
- flutter /
- electromagnetic /
- energy harvesting
-
表 1 能量俘获器参数
Table 1. Basic parameters of the harvester
Parameters Values airfoil span, s/m 0.15 airfoil semi-chord, b/m 0.06 eccentricity, $ {x_\alpha } $ 0.41 nondimensional position, a −0.53 equivalent mass, M1/kg 0.134 airfoil mass, mF/kg 0.048 4 airfoil moment of inertia, $ {I_\alpha }/({\rm{kg}} \cdot {\rm{m}}^2) $ 1.64 × 10−4 plunging damping coefficient, Ch/(kg·s−1) 0.000 1 pitching damping coefficient, ${C_\alpha }/ ({\rm{kg}} \cdot {\rm{m}}^2 \cdot {\rm{s}}^{-1})$ 0.001 magnet volume, Vm/m3 3.53 × 10−6 residual magnetic flux density, Br/T 0.417 load resistance, R/Ω 32 -
[1] 杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese)) [2] 田海港, 单小彪, 张居彬等. 翼型颤振压电俘能器的输出特性研究. 力学学报, 2021, 53(11): 3016-3024 (Tian Haigang, Shan Xiaobiao, Zhang Jubin, et al. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024 (in Chinese)Tian Haigang, Shan Xiaobiao, Zhang Jubin, Sui Guangdong, Xie Tao. Output characteristics investigation of airfoil-based flutter piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3016-3024 (in Chinese)) [3] 杨杰, 许卓, 安坤等. MEMS压电-磁电复合式振动能量采集器. 微纳电子技术, 2015, 52(2): 103-107 (Yang Jie, Xu Zhuo, An Kun, et al. MEMS vibration energy harvester based on the piezoelectric and magnetoelectric effect. Micronanoelectronic Technology, 2015, 52(2): 103-107 (in Chinese)Yang Jie, Xu Zhuo, An Kun, et al. MEMS Vibration energy harvester based on the piezoelectric and magnetoelectric effect. Micronanoelectronic Technology, 2015, 52(2): 103–107 (in Chinese)) [4] Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-697 doi: 10.1016/j.joule.2018.03.011 [5] Zhao L, Zou H, Gao Q, et al. Design, modeling and experimental investigation of a magnetically modulated rotational energy harvester for low frequency and irregular vibration. Science China-Technological Sciences, 2020, 63(10): 2051-2062 doi: 10.1007/s11431-020-1595-x [6] 徐振龙, 单小彪, 谢涛. 宽频压电振动俘能器的研究现状综述. 振动与冲击, 2018, 37(8): 190-199, 205.Xu Zhenlong, Shan Xiaobiao, Xie Tao. A review of broadband piezoelectric vibration energy harvester. Journal of Vibration and Shock, 2018, 37(8): 190-199, 205 (in Chinese)) [7] Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902 [8] Li Z, Zhou S, Yang Z. Recent progress on flutter‐based wind energy harvesting. International Journal of Mechanical System Dynamics, 2022, 2(1): 82-98 doi: 10.1002/msd2.12035 [9] 宋汝君, 单小彪, 杨先海等. 基于压电俘能器的流体能量俘获技术研究现状. 振动与冲击, 2019, 38(17): 244-250, 275 (Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters. Journal of Vibration and Shock, 2019, 38(17): 244-250, 275 (in Chinese)Song Rujun, Shan Xiaobiao, Yang Xianhai, et al. A review of fluid energy capture technology based on piezoelectric energy harvesters. Journal of Vibration and Shock, 2019, 38(17): 244-250 + 275 (in Chinese)) [10] 赵翔, 李思谊, 李映辉. 基于压电振动能量俘获的弯曲结构损伤监测研究. 力学学报, 2021, 53(11): 3035-3044 (Zhao Xiang, Li Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044 (in Chinese)Zhao Xiang, Li Siyi, Li Yinghui. The research on damage detection of curved beam based on piezoelectric vibration energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3035-3044 (in Chinese)) [11] Bryant M, Garcia E. Modeling and testing of a novel aeroelastic flutter energy harvester. Journal of Vibration and Acoustics, 2011, 133(1): 011010 doi: 10.1115/1.4002788 [12] McCarthy JM, Watkins S, Deivasigamani A, et al. Fluttering energy harvesters in the wind: a review. Journal of Sound and Vibration, 2016, 361: 355-377 doi: 10.1016/j.jsv.2015.09.043 [13] Naseer R, Dai HL, Abdelkefi A, et al. Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Applied Energy, 2017, 203: 142-153 doi: 10.1016/j.apenergy.2017.06.018 [14] Zhang LB, Abdelkefi A, Dai HL, et al. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. Journal of Sound and Vibration, 2017, 408: 210-219 doi: 10.1016/j.jsv.2017.07.029 [15] Hou C, Li C, Shan X, et al. A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations. Mechanical Systems and Signal Processing, 2022, 171: 108963 doi: 10.1016/j.ymssp.2022.108963 [16] Bibo A, Daqaq MF. On the optimal performance and universal design curves of galloping energy harvesters. Applied Physics Letters, 2014, 104(2): 023901 doi: 10.1063/1.4861599 [17] Barrero-Gil A, Vicente-Ludlam D, Gutierrez D, et al. Enhance of energy harvesting from transverse galloping by actively rotating the galloping body. Energies, Multidisciplinary Digital Publishing Institute, 2020, 13(1): 91 [18] Yan Z, Wang L, Hajj MR, et al. Energy harvesting from iced-conductor inspired wake galloping. Extreme Mechanics Letters, 2020, 35: 100633 doi: 10.1016/j.eml.2020.100633 [19] Li H, Ding H, Chen L. Chaos threshold of a multistable piezoelectric energy harvester subjected to wake-galloping. International Journal of Bifurcation and Chaos, 2019, 12: 1950162 [20] 李魁, 杨智春, 谷迎松等. 变势能阱双稳态气动弹性能量收集的性能增强研究. 航空学报, 2020, 41(9): 136-147 (Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance enhancement analysis of variable-potential-well bi-stable flutter energy harvesting. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136-147 (in Chinese)Li Kui, Yang Zhichun, Gu Yingsong, et al. Performance Enhancement Analysis of Variable-Potential-Well Bi-stable Flutter Energy Harvesting. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 136–147 (in Chinese)) [21] Bibo A, Daqaq MF. Energy harvesting under combined aerodynamic and base excitations. Journal of Sound and Vibration, 2013, 332(20): 247-257 [22] Bibo A, Daqaq MF. Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator. Applied Physics Letters, 2013, 102(24): 243904 doi: 10.1063/1.4811408 [23] Tian H, Shan X, Cao H, et al. A method for investigating aerodynamic load models of piezoaeroelastic energy harvester. Journal of Sound and Vibration, 2021, 502: 116084 doi: 10.1016/j.jsv.2021.116084 [24] Li Z, Wang S, Zhou S. Multi-solution phenomena and nonlinear characteristics of tristable galloping energy harvesters with magnetic coupling nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 2022, 119: 107076 [25] Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: principle, progress, and perspectives. Journal of Sound and Vibration, 2022, 528: 116886 [26] Li K, Yang Z, Gu Y, et al. Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: modeling, simulation and experimental verification. Smart Materials and Structures, 2019, 28(1): 015020 doi: 10.1088/1361-665X/aaede3 [27] Li K, Yang Z, Zhou S. Performance enhancement for a magnetic-coupled bi-stable flutter-based energy harvester. Smart Materials and Structures, 2020, 29(8): 085045 doi: 10.1088/1361-665X/ab9238 [28] Zhou Z, Qin W, Zhu P, et al. Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Applied Physics Letters, 2019, 114(24): 243902 doi: 10.1063/1.5100598 [29] Hafezi M, Mirdamadi H. A novel design for an adaptive aeroelastic energy harvesting system: flutter and power analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(1): 9 doi: 10.1007/s40430-018-1509-6 [30] Xu Z, Shan X, Chen D, et al. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Applied Sciences, 2016, 6(1): 10 doi: 10.3390/app6010010 [31] Li Z, Zhang H, Litak G, et al. Periodic solutions and frequency lock-in of vortex-induced vibration energy harvesters with nonlinear stiffness. Journal of Sound and Vibration, 2024, 568: 117952 -