STUDY ON THE INFLUENCE OF TEMPERATURE ON THE SIZE OF PARTICLES DEPOSITED IN IMPACTOR
-
摘要: 微颗粒的性质几乎与颗粒的粒径紧密相关, 为研究气溶胶粒子特性, 需获取颗粒粒径分布信息. 惯性撞击器是一种基于惯性原理实现大气中不同粒径颗粒沉积分离的装置, 在实际使用过程中, 经历复杂多变的环境. 文章利用拉格朗日多相 (LMP) 模型对撞击器内的气−固两相流动进行数值模拟, 使用有限体积方法(FVM) 研究了在绝热和换热两种情况下, 气溶胶温度变化 (−40°C ~ 60°C) 对颗粒沉积率的作用, 并分析其对颗粒粒径分离的影响. 结果表明: 在壁面绝热情况下, 随着气溶胶温度的升高, 颗粒沉积位置由冲击板中心向边缘发散, 颗粒收集效率逐渐降低, 颗粒收集数量减少; 在气溶胶和壁面换热情况下, 随着气溶胶温度的升高, 大颗粒沉积位置由冲击板中心向边缘发散, 颗粒收集效率降低, 小颗粒正好相反. 此外, 不同气溶胶温度下的颗粒收集效率曲线存在一个交点, 交点两侧大小颗粒的收集效率随温度的变化情况相反. 通过研究温度对撞击器颗粒收集的影响, 可以对颗粒分径结果进行修正, 获得更精确的粒径分布.Abstract: The properties of microparticles are almost closely related to the particle size. In order to study the characteristics of aerosol particles, it is necessary to obtain particle size distribution information. The inertial impactor is a device based on the principle of inertia to realize the deposition separation of particles of different sizes in the atmosphere. During actual use, it experiences complex and changeable environments. In this paper, the Lagrangian multiphase (LMP) model is used to numerically simulate the gas-solid two-phase flow in the impactor. The effect of aerosol temperature variation (−40°C ~ 60°C) on the particle deposition rate was investigated using the finite volume method (FVM) under both adiabatic and heat transfer conditions, and its effect on particle size separation was analyzed. The results show that: under the condition of wall adiabatic, as the temperature of the aerosol increases, the particle deposition position diverges from the center of the impact plate to the edge, the particle collection efficiency decreases, and the number of particle collection decreases gradually; in the condition of aerosol and wall heat transfer, as the temperature of the aerosol increases, the deposition position of large particles diverges from the center of the impact plate to the edge, and the collection efficiency of particles decreases, while the opposite is true for small particles. In addition, there is an intersection point in the particle collection efficiency curves at different aerosol temperatures, and the collection efficiency of large and small particles on both sides of the intersection point changes oppositely with temperature. By studying the influence of temperature on the impactor particle collection, the results of particle diameter separation can be modified and more accurate particle size distribution can be obtained.
-
表 1 撞击器特征尺寸和操作条件
Table 1. The characteristic size and operating conditions of the impactor
Stage W/mm S/mm D/mm T/mm Pout/kPa Pressure ratio Re 4 1.4 3 7 3 98.41 0.999 680 1 8.3 12 41.5 16 98.54 1.000 1600 表 2 网格参数设置
Table 2. Grid parameter settings
Parameter Stage4 value Stage1 value base size/mm 0.9 4.5 target surface size-percentage of base/% 5 5 minimum surface size-percentage of base/% 5 5 surface growth rate 1.001 1.001 volume growth rate 1 1 表 3 气溶胶温度对d50的影响 (u = 2 m/s)
Table 3. Effect of aerosol temperature on d50 (u = 2 m/s)
Aerosol temperature/K Stage 4 d50/µm Stage 4 ∆d50/µm Stage1 d50/µm Stage 1 ∆d50/µm 233 2.29 −0.20 8.87 −0.73 253 2.36 −0.13 9.14 −0.46 273 2.43 −0.06 9.39 −0.21 293(base case) 2.49 — 9.60 — 313 2.56 + 0.07 9.82 + 0.22 333 2.62 + 0.13 9.98 + 0.38 表 4 气溶胶温度对d50的影响 (u = 2 m/s)
Table 4. Effect of aerosol temperature on d50 (u = 2 m/s)
Aerosol temperature/K Stage 4 d50/µm Stage 4 ∆d50/µm Stage 1 d50/µm Stage 1 ∆d50/µm 233 2.32 −0.12 9.67 + 0.11 253 2.38 −0.06 9.81 + 0.25 273 2.42 −0.02 9.86 + 0.30 293(base case) 2.44 — 9.56 — 313 2.44 0 9.37 −0.19 333 2.44 0 9.36 −0.30 -
[1] Gen M, Ikawa S, Yamaguchi M, et al. A plant growth chamber system equipped with aerosol generators for studying aerosol-vegetation interactions. Particuology, 2024, 85: 122-132 doi: 10.1016/j.partic.2023.03.018 [2] Bémer D. Granular bed filtration of a liquid aerosol. Powder Technology, 2022, 395: 218-225 doi: 10.1016/j.powtec.2021.09.023 [3] Farkas Á, Tomisa G, Kugler S, et al. The effect of exhalation before the inhalation of dry powder aerosol drugs on the breathing parameters, emitted doses and aerosol size distributions. International Journal of Pharmaceutics:X, 2023, 5: 100167 doi: 10.1016/j.ijpx.2023.100167 [4] Wang JW, Zhang Y, Chen XL, et al. Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study. Powder Technology, 2022, 405: 117520 doi: 10.1016/j.powtec.2022.117520 [5] Zhang XY, Bao Z, Zhang LY, et al. Biomass burning and aqueous reactions drive the elevation of wintertime PM2.5 in the rural area of the Sichuan basin, China. Atmospheric Environment, 2023, 306: 119779 doi: 10.1016/j.atmosenv.2023.119779 [6] Xu K, Liu YF, Li CL, et al. Enhanced secondary organic aerosol formation during dust episodes by photochemical reactions in the winter in Wuhan. Journal of Environmental Sciences, 2023, 133: 70-82 doi: 10.1016/j.jes.2022.04.018 [7] Gong J, Qi JH, Beibei E, et al. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environmental Pollution, 2020, 257: 113485 doi: 10.1016/j.envpol.2019.113485 [8] Bonzini M, Tripodi A, Artoni A, et al. Effects of inhalable particulate matter on blood coagulation. Journal of Thrombosis and Haemostasis, 2010, 8(4): 662-668 doi: 10.1111/j.1538-7836.2009.03694.x [9] 陈静. 应用于平板显示核壳结构微球材料的合成 [硕士论文]. 武汉: 武汉工程大学, 2018Chen Jing. Synthesis of core-shell microsphere materials applied in plate display. [Master Thesis]. Wuhan: Wuhan Institute of Technology, 2018 (in Chinese) [10] Lupu FC, Munteanu C, Sachelarie AC, et al. Improving the usage properties of steel using cold spray deposition: A review. Crystals, 2023, 13(2): 245 doi: 10.3390/cryst13020245 [11] Soysal U, Géhin E, Marty F, et al. Exploring deposition pattern characteristics of aerosols and bioaerosols by inertial impaction for the development of real-time silicon MEMS mass detection systems. Aerosol Science and Technology, 2021, 55(4): 414-422 doi: 10.1080/02786826.2020.1861211 [12] 王艳芝, 赵彦琳, 姚军. 湍流方管中颗粒分散和沉降行为的数值模拟. 工程热物理学报, 2019, 40(4): 839-845 (Wang Yanzhi, Zhao Yanlin, Yao Jun. Numerical simulation of particle diepersion and deposition in turbulent square duct flow. Journal of Engineering Thermophysis, 2019, 40(4): 839-845 (in Chinese)Wang Yanzhi, Zhao Yanlin, Yao Jun. Numerical simulation of particle diepersion and deposition in turbulent square duct flow. Journal of Engineering Thermophysis, 2019, 40(4): 839-845 (in Chinese) [13] Sato Y, Kato Y, Iizumi Y, et al. Size distributions of cellulose nanocrystals in dispersions using the centrifugal sedimentation method. International Journal of Biological Macromolecules, 2023, 233: 123520 doi: 10.1016/j.ijbiomac.2023.123520 [14] Madhukesh JK, Prasannakumara BC, Khan U, et al. Time-dependent stagnation point flow of water conveying titanium dioxide nanoparticle aggregation on rotating sphere object experiencing thermophoresis particle deposition effects. Energies, 2022, 15(12): 4424 doi: 10.3390/en15124424 [15] 田华, 张钊, 陈天宇等. 管排换热器碳烟颗粒沉积分布特性的数值模拟. 天津大学学报(自然科学与工程技术版), 2021, 54(8): 825-833 (Tian Hua, Zhang Zhao, Chen Tianyu, et al. Numerical simulation on soot particle deposition distribution characteristics of tube heat exchangers. Journal of Tianjin University(Science and Technology), 2021, 54(8): 825-833 (in Chinese)Tian Hua, Zhang Zhao, Chen Tianyu, et al. Numerical Simulation on Soot Particle Deposition Distribution Characteristics of Tube Heat Exchangers. Journal of Tianjin University(Science and Technology), 2021, 54(8): 825-833 (in Chinese) [16] Le TC, Tsai CJ. Inertial impaction technique for the classification of particulate matters and nanoparticles: A review. KONA Powder and Particle Journal, 2021, 38: 42-63 doi: 10.14356/kona.2021004 [17] 孙奇. 高温环境细颗粒惯性撞击沉积实验研究 [博士论文]. 北京: 清华大学, 2013Sun Qi. Experimental study on the inertial impact of fine particles in high temperature environment. [PhD Thesis]. Beijing: Tsinghua University, 2013 (in Chinese) [18] Kero I, Naess MK, Tranell G. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI). Journal of Occupational and Environmental Hygiene, 2015, 12(1): 37-44 doi: 10.1080/15459624.2014.935783 [19] Marjamäki M, Keskinen J, Chen DR, et al. Performance evaluation of the electrical low-pressure impactor (ELPI). Journal of Aerosol Science, 2000, 31(2): 249-261 doi: 10.1016/S0021-8502(99)00052-X [20] Virtanen A, Rönkkö T, Kannosto J, et al. Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 2006, 6(9): 2411-2421 doi: 10.5194/acp-6-2411-2006 [21] Kumar V, Bariwal J, Narang AS, et al. Functional similarity of modified cascade impactor to deposit drug particles on cells. International Journal of Pharmaceutics, 2020, 583: 119404 doi: 10.1016/j.ijpharm.2020.119404 [22] Estíbaliz GR, Romay FJ, García JA, et al. Effect of nozzle spacing in the formation of primary and secondary deposits in multi-nozzle inertial impactors part II: Numerical study. Journal of Aerosol Science, 2019, 136: 106-127 doi: 10.1016/j.jaerosci.2019.06.009 [23] Estíbaliz GR, Romay FJ, García JA, et al. Effect of nozzle spacing in the formation of primary and secondary deposits in multi-nozzle inertial impactors part I: Experimental study. Journal of Aerosol Science, 2019, 136: 61-81 doi: 10.1016/j.jaerosci.2019.06.008 [24] Kim WG, Yook SJ, Ahn KH. Collection efficiency of rectangular slit-nozzle inertial impactors with impaction plates of elliptical concave curvature. Aerosol Science and Technology, 2013, 47(1): 99-105 doi: 10.1080/02786826.2012.730162 [25] Kala S, Saylor JR. Factors affecting the diameter of ring-shaped deposition patterns in inertial impactors having small S/W ratios. Aerosol Science and Technology, 2022, 56(3): 234-246 doi: 10.1080/02786826.2021.2007214 [26] Huang CH, Tsai CJ. Effect of gravity on particle collection efficiency of inertial impactors. Journal of Aerosol Science, 2001, 32(3): 375-387 doi: 10.1016/S0021-8502(00)00086-0 [27] Faraji KM, Kheradmand S. Numerical investigation of ambient temperature and actual impactor plates effects on its efficiency. Modares Mechanical Engineering, 2019, 19(6): 1327-1335 [28] Mottaghi P, Abbasalizadeh M, Hesam AB. Depositional arrangement of non-spherical atmospheric particles on impaction plate of a multi-nozzle impactor. Aerosol Science and Technology, 2019, 53(12): 1381-1392 doi: 10.1080/02786826.2019.1665622 [29] Lee BU, Kim SS. The effect of varying impaction plate temperature on impactor performance: Experimental studies. Journal of Aerosol Science, 2002, 33(3): 451-457 doi: 10.1016/S0021-8502(01)00191-4 [30] Wang RF, Zhao H, Li JQ, et al. Computational fluid dynamics study of the effects of temperature and geometry parameters on a virtual impactor. Micromachines, 2022, 13(9): 1477 doi: 10.3390/mi13091477 [31] 常清, 杨复沫, 李兴华等. 北京冬季雾霾天气下颗粒物及其化学组分的粒径分布特征研究. 环境科学学报, 2015, 35(2): 363-370 (Chang Qing, Yang Fumo, Li Xinghua, et al. Characteristics of mass and chemical species size distributions of particulate matter during haze pollution in the winter of Beijing. Acta Scientiae Circumstantiae, 2015, 35(2): 363-370 (in Chinese)Chang Qing, Yang Fumo, Li Xinghua, et al. Characteristics of mass and chemical species size distributions of particulate matter during haze pollution in the winter of Beijing. Acta Scientiae Circumstantiae, 2015, 35(2): 363-370 (in Chinese) [32] Kero I, Naess MK, Tranell G. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI). Journal of Occupational & Environmental Hygiene, 2015, 12(1): 37-44 [33] Maricq MM, Podsiadlik DH, Chase RE. Size distributions of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements. Aerosol Science & Technology, 2000, 33(3): 239-260 [34] 张丹, 赵丽, 陈刚才等. 不同燃烧过程颗粒物粒径排放特征. 中国环境科学, 2015, 35(11): 3239-3246 (Zhang Dan, Zhao Li, Chen Gangcai, et al. The particle size distribution characteristics of different combustion sources. China Environmental Science, 2015, 35(11): 3239-3246 (in Chinese)Zhang Dan, Zhao Li, Chen Gangcai, et al. The particle size distribution characteristics of different combustion sources. China Environmental Science, 2015, 35(11): 3239-3246 (in Chinese) [35] 王孝峰, 周顺, 何庆等. 加热状态下烟草气溶胶释放特性的影响因素: 温度、甘油和气氛. 烟草科技, 2017, 50(10): 48-54 (Wang Xiaofeng, Zhou Shun, He Qing, et al. Factors influencing aerosol release characteristics of tobacco heated at low temperature: temperature, glycerol and atmosphere. Tobacco Science&Technology, 2017, 50(10): 48-54 (in Chinese)Wang Xiaofeng, Zhou Shun, He Qing, et al. Factors influencing aerosol release characteristics of tobacco heated at low temperature: temperature, glycerol and atmosphere. Tobacco Science&Technology, 2017, 50(10): 48-54 (in Chinese) [36] 杨肃, 张会琴, 余王昕等. 基于沿程坐标积分模式颗粒流与结构物阵列相互作用的数值模拟. 力学学报, 2021, 53(12): 3399-3412 (Yang Su, Zhang Huiqin, Yu Wangxin, et al. Numerical study of interaction between granular flow and an array of obstacles by a bedfitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412 (in Chinese)Yang Su, Zhang Huiqin, Yu Wangxin, et al. Numerical study of interaction between granular flow and an array of obstacles by a bedfitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412 (in Chinese) [37] De Vanna F, Picano F, Benini E. A sharp-interface immersed boundary method for moving objects in compressible viscous flows. Computers & Fluids, 2020, 201: 104415 [38] 袁方洋. 纳米颗粒两相流中颗粒动力学演变及对流传热和阻力特牲的研究 [博士论文]. 杭州: 浙江大学, 2017Yuan Fangyang. Research on the dynamic behavior of nanoparticles and the characteristics of convective heat transfer and resistance in nanoparticle two-phase flow. [PhD Thesis]. Hangzhou: Zhejiang University, 2017 (in Chinese) [39] Kadota K, Inoue N, Matsunaga Y, et al. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns. Journal of Pharmacy and Pharmacology, 2020, 72(1): 17-28 doi: 10.1111/jphp.13195 [40] Tang YJ. Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms. Texas: Texas A&M University Press, 2012 [41] Schiller VL. Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z Vereines Deutscher Inge, 1933, 77: 318-321 [42] Talbot L, Cheng RK, Schefer RW, et al. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, 1980, 101(4): 737-758 doi: 10.1017/S0022112080001905 [43] Park CW, Kim G, Yook SJ, et al. Investigation of collection efficiency of round-nozzle impactors at different atmospheric pressures and temperatures. Advanced Powder Technology, 2015, 26(3): 868-873 doi: 10.1016/j.apt.2015.02.014 [44] Tsai CJ, Lin JS, Aggarwal SG, et al. Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Science and Technology, 2004, 38(2): 131-139 doi: 10.1080/02786820490251358 [45] Chang YP, Tsai R, Sui FM. The effect of thermophoresis on particle deposition from a mixed convection flow onto a vertical flat plate. Journal of Aerosol Science, 1999, 30(10): 1363-1378 doi: 10.1016/S0021-8502(99)00023-3 -