EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对撞击器内颗粒沉积粒径影响的研究

彭慧 池辉 徐聪 尹招琴 包福兵 凃程旭

彭慧, 池辉, 徐聪, 尹招琴, 包福兵, 凃程旭. 温度对撞击器内颗粒沉积粒径影响的研究. 力学学报, 2023, 55(11): 1-15 doi: 10.6052/0459-1879-23-316
引用本文: 彭慧, 池辉, 徐聪, 尹招琴, 包福兵, 凃程旭. 温度对撞击器内颗粒沉积粒径影响的研究. 力学学报, 2023, 55(11): 1-15 doi: 10.6052/0459-1879-23-316
Peng Hui, Chi Hui, Xu Cong, Yin Zhaoqin, Bao Fubing, Tu Chengxu. Study on the influence of temperature on the size of particles deposited in impactor. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 1-15 doi: 10.6052/0459-1879-23-316
Citation: Peng Hui, Chi Hui, Xu Cong, Yin Zhaoqin, Bao Fubing, Tu Chengxu. Study on the influence of temperature on the size of particles deposited in impactor. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 1-15 doi: 10.6052/0459-1879-23-316

温度对撞击器内颗粒沉积粒径影响的研究

doi: 10.6052/0459-1879-23-316
基金项目: 国家自然科学基金 (11972335) 和福建省能源计量重点实验室开放课题基金 (NYJL-KFKT-2022-03) 资助项目
详细信息
    通讯作者:

    尹招琴, 教授, 主要研究方向为纳米颗粒两相流及流体仿真. E-mail: yinzq@cjlu.edu.cn

  • 中图分类号: O359

STUDY ON THE INFLUENCE OF TEMPERATURE ON THE SIZE OF PARTICLES DEPOSITED IN IMPACTOR

  • 摘要: 微颗粒的性质几乎与颗粒的粒径紧密相关, 为研究气溶胶粒子特性, 需获取颗粒粒径分布信息. 惯性撞击器是一种基于惯性原理实现大气中不同粒径颗粒沉积分离的装置, 在实际使用过程中, 经历复杂多变的环境. 文章利用拉格朗日多相 (LMP) 模型对撞击器内的气−固两相流动进行数值模拟, 使用有限体积方法(FVM) 研究了在绝热和换热两种情况下, 气溶胶温度变化 (−40°C ~ 60°C) 对颗粒沉积率的作用, 并分析其对颗粒粒径分离的影响. 结果表明: 在壁面绝热情况下, 随着气溶胶温度的升高, 颗粒沉积位置由冲击板中心向边缘发散, 颗粒收集效率逐渐降低, 颗粒收集数量减少; 在气溶胶和壁面换热情况下, 随着气溶胶温度的升高, 大颗粒沉积位置由冲击板中心向边缘发散, 颗粒收集效率降低, 小颗粒正好相反. 此外, 不同气溶胶温度下的颗粒收集效率曲线存在一个交点, 交点两侧大小颗粒的收集效率随温度的变化情况相反. 通过研究温度对撞击器颗粒收集的影响, 可以对颗粒分径结果进行修正, 获得更精确的粒径分布.

     

  • 图  1  撞击器几何形状

    Figure  1.  Impactor geometry

    图  2  不同网格数下第4级和第1级撞击器颗粒收集效率对比

    Figure  2.  Comparison of particle collection efficiency of stage4 and stage1 impactors with different mesh numbers

    图  3  颗粒收集效率CFD结果与文献结果的比较

    Figure  3.  Comparison of CFD results of particle collection efficiency with literature results

    图  4  撞击器在非绝热条件下的温度场分布

    Figure  4.  Temperature field distribution of impactor under non-adiabatic condition

    图  5  撞击器在气溶胶温度改变和测量过程存在温差时中心轴线的速度分布

    Figure  5.  The velocity distribution of the central axis of the impactor when the aerosol temperature changes and the measurement process has a temperature difference

    图  6  不同气溶胶温度下, 2.3 µm和3.4 µm颗粒在平板上的沉积分布

    Figure  6.  Deposition distribution of 2.3 µm and 3.4 µm particles on impact plate at different aerosol temperatures

    图  7  气溶胶温度为233 K和333 K时, 在x = 0.2 mm处喷射的颗粒所受曳力大小

    Figure  7.  The drag force on the particles sprayed at x = 0.2 mm at the aerosol temperature of 233 K and 333 K

    图  8  不同气溶胶温度下, 在入口距离中心0.2 mm处流线和颗粒的运动轨迹以及流场速度和颗粒速度对比

    Figure  8.  At different aerosol temperatures, at the entrance 0.2 mm from the center streamline, flow field velocity and particle velocity comparison, trajectory of 2.3μm particles, and 3.4μm particles

    图  9  入口速度为2 m/s, 3 µm和2 µm粒径颗粒在冲击板上沉积分布

    Figure  9.  The entrance velocity is 2 m/s, the deposition distribution of 3 µm and 2 µm particles on the impact plate

    图  10  不同气溶胶温度下, 在入口距离中心0.2 mm处流线和颗粒的运动轨迹以及流场速度和颗粒速度对比

    Figure  10.  At different aerosol temperatures, at the entrance 0.2 mm from the center streamline, flow field velocity and particle velocity comparison, trajectory of 2 μm particles, and 3 μm particles

    图  11  在入口距离中心0.2 mm喷射3 µm颗粒速度分布

    Figure  11.  Velocity distribution of 3 µm particles sprayed at the entrance 0.2 mm from the center

    图  12  气溶胶温度变化, 撞击器第1级和第4级的颗粒收集效率

    Figure  12.  Particle collection efficiency of impactor stage 1 and 4 at different aerosol temperatures

    图  13  在不同入口速度下, 气溶胶温度对颗粒收集效率的影响

    Figure  13.  Effect of aerosol temperature on particle collection efficiency at different inlet velocities

    图  14  在入口速度0.5 ~ 3 m/s下, 气溶胶温度对d50的影响

    Figure  14.  Influence of aerosol temperature on d50 at the inlet velocity of 0.5 ~ 3 m/s

    图  15  气溶胶温度变化, 撞击器第1级和第4级的颗粒收集效率

    Figure  15.  Particle collection efficiency of impactor stage 1 and 4 at different aerosol temperatures

    图  16  在不同入口速度下, 气溶胶温度对颗粒收集效率的影响

    Figure  16.  Effect of aerosol temperature on particle collection efficiency at different inlet velocities

    图  17  在入口速度0.5 ~ 3 m/s下, 气溶胶温度对d50的影响

    Figure  17.  Influence of aerosol temperature on d50 at the inlet velocity of 0.5 ~ 3 m/s

    表  1  撞击器特征尺寸和操作条件

    Table  1.   The characteristic size and operating conditions of the impactor

    StageW/mmS/mmD/mmT/mmPout/kPaPressure ratioRe
    41.437398.410.999680
    18.31241.51698.541.0001600
    下载: 导出CSV

    表  2  网格参数设置

    Table  2.   Grid parameter settings

    ParameterStage4 valueStage1 value
    base size/mm0.94.5
    target surface size-percentage of base/%55
    minimum surface size-percentage of base/%55
    surface growth rate1.0011.001
    volume growth rate11
    下载: 导出CSV

    表  3  气溶胶温度对d50的影响 (u = 2 m/s)

    Table  3.   Effect of aerosol temperature on d50 (u = 2 m/s)

    Aerosol temperature/KStage 4 d50/µmStage 4 ∆d50/µmStage1 d50/µmStage 1 ∆d50/µm
    2332.29−0.208.87−0.73
    2532.36−0.139.14−0.46
    2732.43−0.069.39−0.21
    293(base case)2.499.60
    3132.56 + 0.079.82 + 0.22
    3332.62 + 0.139.98 + 0.38
    下载: 导出CSV

    表  4  气溶胶温度对d50的影响 (u = 2 m/s)

    Table  4.   Effect of aerosol temperature on d50 (u = 2 m/s)

    Aerosol temperature/KStage 4 d50/µmStage 4 ∆d50/µmStage 1 d50/µmStage 1 ∆d50/µm
    2332.32−0.129.67 + 0.11
    2532.38−0.069.81 + 0.25
    2732.42−0.029.86 + 0.30
    293(base case)2.449.56
    3132.4409.37−0.19
    3332.4409.36−0.30
    下载: 导出CSV
  • [1] Gen M, Ikawa S, Yamaguchi M, et al. A plant growth chamber system equipped with aerosol generators for studying aerosol-vegetation interactions. Particuology, 2024, 85: 122-132 doi: 10.1016/j.partic.2023.03.018
    [2] Bémer D. Granular bed filtration of a liquid aerosol. Powder Technology, 2022, 395: 218-225 doi: 10.1016/j.powtec.2021.09.023
    [3] Farkas Á, Tomisa G, Kugler S, et al. The effect of exhalation before the inhalation of dry powder aerosol drugs on the breathing parameters, emitted doses and aerosol size distributions. International Journal of Pharmaceutics:X, 2023, 5: 100167 doi: 10.1016/j.ijpx.2023.100167
    [4] Wang JW, Zhang Y, Chen XL, et al. Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study. Powder Technology, 2022, 405: 117520 doi: 10.1016/j.powtec.2022.117520
    [5] Zhang XY, Bao Z, Zhang LY, et al. Biomass burning and aqueous reactions drive the elevation of wintertime PM2.5 in the rural area of the Sichuan basin, China. Atmospheric Environment, 2023, 306: 119779 doi: 10.1016/j.atmosenv.2023.119779
    [6] Xu K, Liu YF, Li CL, et al. Enhanced secondary organic aerosol formation during dust episodes by photochemical reactions in the winter in Wuhan. Journal of Environmental Sciences, 2023, 133: 70-82 doi: 10.1016/j.jes.2022.04.018
    [7] Gong J, Qi JH, Beibei E, et al. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environmental Pollution, 2020, 257: 113485 doi: 10.1016/j.envpol.2019.113485
    [8] Bonzini M, Tripodi A, Artoni A, et al. Effects of inhalable particulate matter on blood coagulation. Journal of Thrombosis and Haemostasis, 2010, 8(4): 662-668 doi: 10.1111/j.1538-7836.2009.03694.x
    [9] 陈静. 应用于平板显示核壳结构微球材料的合成 [硕士论文]. 武汉: 武汉工程大学, 2018

    Chen Jing. Synthesis of core-shell microsphere materials applied in plate display. [Master Thesis]. Wuhan: Wuhan Institute of Technology, 2018 (in Chinese)
    [10] Lupu FC, Munteanu C, Sachelarie AC, et al. Improving the usage properties of steel using cold spray deposition: A review. Crystals, 2023, 13(2): 245 doi: 10.3390/cryst13020245
    [11] Soysal U, Géhin E, Marty F, et al. Exploring deposition pattern characteristics of aerosols and bioaerosols by inertial impaction for the development of real-time silicon MEMS mass detection systems. Aerosol Science and Technology, 2021, 55(4): 414-422 doi: 10.1080/02786826.2020.1861211
    [12] 王艳芝, 赵彦琳, 姚军. 湍流方管中颗粒分散和沉降行为的数值模拟. 工程热物理学报, 2019, 40(4): 839-845 (Wang Yanzhi, Zhao Yanlin, Yao Jun. Numerical simulation of particle diepersion and deposition in turbulent square duct flow. Journal of Engineering Thermophysis, 2019, 40(4): 839-845 (in Chinese)

    Wang Yanzhi, Zhao Yanlin, Yao Jun. Numerical simulation of particle diepersion and deposition in turbulent square duct flow. Journal of Engineering Thermophysis, 2019, 40(4): 839-845 (in Chinese)
    [13] Sato Y, Kato Y, Iizumi Y, et al. Size distributions of cellulose nanocrystals in dispersions using the centrifugal sedimentation method. International Journal of Biological Macromolecules, 2023, 233: 123520 doi: 10.1016/j.ijbiomac.2023.123520
    [14] Madhukesh JK, Prasannakumara BC, Khan U, et al. Time-dependent stagnation point flow of water conveying titanium dioxide nanoparticle aggregation on rotating sphere object experiencing thermophoresis particle deposition effects. Energies, 2022, 15(12): 4424 doi: 10.3390/en15124424
    [15] 田华, 张钊, 陈天宇等. 管排换热器碳烟颗粒沉积分布特性的数值模拟. 天津大学学报(自然科学与工程技术版), 2021, 54(8): 825-833 (Tian Hua, Zhang Zhao, Chen Tianyu, et al. Numerical simulation on soot particle deposition distribution characteristics of tube heat exchangers. Journal of Tianjin University(Science and Technology), 2021, 54(8): 825-833 (in Chinese)

    Tian Hua, Zhang Zhao, Chen Tianyu, et al. Numerical Simulation on Soot Particle Deposition Distribution Characteristics of Tube Heat Exchangers. Journal of Tianjin University(Science and Technology), 2021, 54(8): 825-833 (in Chinese)
    [16] Le TC, Tsai CJ. Inertial impaction technique for the classification of particulate matters and nanoparticles: A review. KONA Powder and Particle Journal, 2021, 38: 42-63 doi: 10.14356/kona.2021004
    [17] 孙奇. 高温环境细颗粒惯性撞击沉积实验研究 [博士论文]. 北京: 清华大学, 2013

    Sun Qi. Experimental study on the inertial impact of fine particles in high temperature environment. [PhD Thesis]. Beijing: Tsinghua University, 2013 (in Chinese)
    [18] Kero I, Naess MK, Tranell G. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI). Journal of Occupational and Environmental Hygiene, 2015, 12(1): 37-44 doi: 10.1080/15459624.2014.935783
    [19] Marjamäki M, Keskinen J, Chen DR, et al. Performance evaluation of the electrical low-pressure impactor (ELPI). Journal of Aerosol Science, 2000, 31(2): 249-261 doi: 10.1016/S0021-8502(99)00052-X
    [20] Virtanen A, Rönkkö T, Kannosto J, et al. Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 2006, 6(9): 2411-2421 doi: 10.5194/acp-6-2411-2006
    [21] Kumar V, Bariwal J, Narang AS, et al. Functional similarity of modified cascade impactor to deposit drug particles on cells. International Journal of Pharmaceutics, 2020, 583: 119404 doi: 10.1016/j.ijpharm.2020.119404
    [22] Estíbaliz GR, Romay FJ, García JA, et al. Effect of nozzle spacing in the formation of primary and secondary deposits in multi-nozzle inertial impactors part II: Numerical study. Journal of Aerosol Science, 2019, 136: 106-127 doi: 10.1016/j.jaerosci.2019.06.009
    [23] Estíbaliz GR, Romay FJ, García JA, et al. Effect of nozzle spacing in the formation of primary and secondary deposits in multi-nozzle inertial impactors part I: Experimental study. Journal of Aerosol Science, 2019, 136: 61-81 doi: 10.1016/j.jaerosci.2019.06.008
    [24] Kim WG, Yook SJ, Ahn KH. Collection efficiency of rectangular slit-nozzle inertial impactors with impaction plates of elliptical concave curvature. Aerosol Science and Technology, 2013, 47(1): 99-105 doi: 10.1080/02786826.2012.730162
    [25] Kala S, Saylor JR. Factors affecting the diameter of ring-shaped deposition patterns in inertial impactors having small S/W ratios. Aerosol Science and Technology, 2022, 56(3): 234-246 doi: 10.1080/02786826.2021.2007214
    [26] Huang CH, Tsai CJ. Effect of gravity on particle collection efficiency of inertial impactors. Journal of Aerosol Science, 2001, 32(3): 375-387 doi: 10.1016/S0021-8502(00)00086-0
    [27] Faraji KM, Kheradmand S. Numerical investigation of ambient temperature and actual impactor plates effects on its efficiency. Modares Mechanical Engineering, 2019, 19(6): 1327-1335
    [28] Mottaghi P, Abbasalizadeh M, Hesam AB. Depositional arrangement of non-spherical atmospheric particles on impaction plate of a multi-nozzle impactor. Aerosol Science and Technology, 2019, 53(12): 1381-1392 doi: 10.1080/02786826.2019.1665622
    [29] Lee BU, Kim SS. The effect of varying impaction plate temperature on impactor performance: Experimental studies. Journal of Aerosol Science, 2002, 33(3): 451-457 doi: 10.1016/S0021-8502(01)00191-4
    [30] Wang RF, Zhao H, Li JQ, et al. Computational fluid dynamics study of the effects of temperature and geometry parameters on a virtual impactor. Micromachines, 2022, 13(9): 1477 doi: 10.3390/mi13091477
    [31] 常清, 杨复沫, 李兴华等. 北京冬季雾霾天气下颗粒物及其化学组分的粒径分布特征研究. 环境科学学报, 2015, 35(2): 363-370 (Chang Qing, Yang Fumo, Li Xinghua, et al. Characteristics of mass and chemical species size distributions of particulate matter during haze pollution in the winter of Beijing. Acta Scientiae Circumstantiae, 2015, 35(2): 363-370 (in Chinese)

    Chang Qing, Yang Fumo, Li Xinghua, et al. Characteristics of mass and chemical species size distributions of particulate matter during haze pollution in the winter of Beijing. Acta Scientiae Circumstantiae, 2015, 35(2): 363-370 (in Chinese)
    [32] Kero I, Naess MK, Tranell G. Particle size distributions of particulate emissions from the ferroalloy industry evaluated by electrical low pressure impactor (ELPI). Journal of Occupational & Environmental Hygiene, 2015, 12(1): 37-44
    [33] Maricq MM, Podsiadlik DH, Chase RE. Size distributions of motor vehicle exhaust PM: a comparison between ELPI and SMPS measurements. Aerosol Science & Technology, 2000, 33(3): 239-260
    [34] 张丹, 赵丽, 陈刚才等. 不同燃烧过程颗粒物粒径排放特征. 中国环境科学, 2015, 35(11): 3239-3246 (Zhang Dan, Zhao Li, Chen Gangcai, et al. The particle size distribution characteristics of different combustion sources. China Environmental Science, 2015, 35(11): 3239-3246 (in Chinese)

    Zhang Dan, Zhao Li, Chen Gangcai, et al. The particle size distribution characteristics of different combustion sources. China Environmental Science, 2015, 35(11): 3239-3246 (in Chinese)
    [35] 王孝峰, 周顺, 何庆等. 加热状态下烟草气溶胶释放特性的影响因素: 温度、甘油和气氛. 烟草科技, 2017, 50(10): 48-54 (Wang Xiaofeng, Zhou Shun, He Qing, et al. Factors influencing aerosol release characteristics of tobacco heated at low temperature: temperature, glycerol and atmosphere. Tobacco Science&Technology, 2017, 50(10): 48-54 (in Chinese)

    Wang Xiaofeng, Zhou Shun, He Qing, et al. Factors influencing aerosol release characteristics of tobacco heated at low temperature: temperature, glycerol and atmosphere. Tobacco Science&Technology, 2017, 50(10): 48-54 (in Chinese)
    [36] 杨肃, 张会琴, 余王昕等. 基于沿程坐标积分模式颗粒流与结构物阵列相互作用的数值模拟. 力学学报, 2021, 53(12): 3399-3412 (Yang Su, Zhang Huiqin, Yu Wangxin, et al. Numerical study of interaction between granular flow and an array of obstacles by a bedfitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412 (in Chinese)

    Yang Su, Zhang Huiqin, Yu Wangxin, et al. Numerical study of interaction between granular flow and an array of obstacles by a bedfitted depth-averaged model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3399-3412 (in Chinese)
    [37] De Vanna F, Picano F, Benini E. A sharp-interface immersed boundary method for moving objects in compressible viscous flows. Computers & Fluids, 2020, 201: 104415
    [38] 袁方洋. 纳米颗粒两相流中颗粒动力学演变及对流传热和阻力特牲的研究 [博士论文]. 杭州: 浙江大学, 2017

    Yuan Fangyang. Research on the dynamic behavior of nanoparticles and the characteristics of convective heat transfer and resistance in nanoparticle two-phase flow. [PhD Thesis]. Hangzhou: Zhejiang University, 2017 (in Chinese)
    [39] Kadota K, Inoue N, Matsunaga Y, et al. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns. Journal of Pharmacy and Pharmacology, 2020, 72(1): 17-28 doi: 10.1111/jphp.13195
    [40] Tang YJ. Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms. Texas: Texas A&M University Press, 2012
    [41] Schiller VL. Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z Vereines Deutscher Inge, 1933, 77: 318-321
    [42] Talbot L, Cheng RK, Schefer RW, et al. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, 1980, 101(4): 737-758 doi: 10.1017/S0022112080001905
    [43] Park CW, Kim G, Yook SJ, et al. Investigation of collection efficiency of round-nozzle impactors at different atmospheric pressures and temperatures. Advanced Powder Technology, 2015, 26(3): 868-873 doi: 10.1016/j.apt.2015.02.014
    [44] Tsai CJ, Lin JS, Aggarwal SG, et al. Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Science and Technology, 2004, 38(2): 131-139 doi: 10.1080/02786820490251358
    [45] Chang YP, Tsai R, Sui FM. The effect of thermophoresis on particle deposition from a mixed convection flow onto a vertical flat plate. Journal of Aerosol Science, 1999, 30(10): 1363-1378 doi: 10.1016/S0021-8502(99)00023-3
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  24
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-08-31

目录

    /

    返回文章
    返回