ROBUST DYNAMIC TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURE SUBJECTED TO HARMONIC EXCITATION WITH LOADING DIRECTION UNCERTAINTY
-
摘要: 采用一种高效的方法开展了在外载荷作用方向不确定条件下, 连续体结构动态稳健性拓扑优化设计研究, 有效降低了结构的稳态动响应对简谐激励作用方向随机扰动的敏感性. 首先基于概率模型, 将动载荷作用方向的不确定性用正态分布函数表示. 其次通过二阶泰勒展开式, 高效地计算出在激励方向扰动情形下结构动柔顺度的均值和方差, 进而推导出了其对拓扑设计变量的一阶导数灵敏度显性表达式. 最后在材料体积约束下, 以动柔顺度概率特征指标的加权和为设计目标, 基于变密度方法, 对连续体结构进行动态稳健性拓扑优化设计, 并与传统载荷方向固定条件下的确定性优化结果进行对比, 充分展示了考虑外激励作用方向随机扰动对结构拓扑构型设计及其动柔顺度变化的影响. 对优化数值结果进一步分析表明, 采用文章提出的方法所得结构的动响应稳健性更高, 能有效抵抗外激励作用方向的随机扰动. 只需少许增加材料, 稳健性优化设计的动响应将在整个载荷扰动区域内优于确定性优化结果.Abstract: An efficient method is proposed in this paper to study the dynamic robust topology optimization of a continuum structure under the loading direction uncertainty of a harmonic excitation. The design purpose is to reduce the sensitivity of the structural steady-state response of the topological layout to the external load direction perturbations. Firstly, on the basis of the probability representation of an uncertainty, the stochastic variation of the loading direction is described reasonably by a normal distribution, and the external excitation is decomposed along the two essential axes. Then, both the mean and variance of the structural dynamic compliance under the load direction variation are represented efficiently through the quadratic Taylor series expansions with respect to the nominal loading state. Furthermore, the design sensitivity analyses of those stochastic characteristics to a topological variable are performed readily upon the quadratic Taylor expressions such that the explicit formulae are achieved without any extra implementations. Finally, the weighted sum of the mean and standard deviation of the dynamic structural compliance is accordingly defined as the objective function and the coefficient of variation of the dynamic compliance is introduced as the measurement of the structural robustness. Then the robust dynamic topology optimization can be performed with a gradient-based density approach on the RAMP (rational approximation of material properties) model. Both the robust and deterministic topology optimizations of two benchmark examples loaded with the harmonic excitation are conducted respectively, and the structural layouts are compared comprehensively. Numerical results show that the robust dynamic topology optimal configurations can essentially provide a higher robustness against the load direction disturbances than the corresponding deterministic ones and exhibit much stronger resilience. As the material volume constraint is relaxed a little, the dynamic compliance of the robust topology optimization will be smaller than that of the deterministic topology optimization over the whole load uncertain variation range.
-
表 1 两种方法所得结构动柔顺度概率特征指标对比
Table 1. Comparison of the obtained stochastic measurements of the structural dynamic compliance
Method $ {\text{μ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J $ {\text{σ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J CPU time/s MCS 8.233 0 0.168 3 27.890 6 proposed method 8.224 5 0.170 8 0.015 6 different ratio/% 0.103 2 1.485 4 −99.944 1 表 2 两种设计策略结构拓扑优化结果对比
Table 2. Comparison of the numerical results with the two optimization strategies
Loading direction Cd0/J $ {\text{μ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J $ {\text{σ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J J/J cv fixed 0.961 7 2.461 6 2.181 4 6.824 5 0.842 1 uncertain 1.108 9 1.170 3 0.016 0 1.202 3 0.013 7 different ratio/% 15.302 1 −52.458 9 −99.266 4 −82.382 9 −98.376 1 表 3 简支平板结构前3阶固有频率比较
Table 3. Comparison of the first three natural frequencies of the rectangular panel structure
Design status Natural frequency /Hz first second third initial 265.64 285.96 468.53 deterministic optimization 483.12 496.45 613.87 robust optimization 482.73 489.39 595.12 表 4 两种设计策略结构拓扑在高频外激励条件下优化结果对比
Table 4. Comparison of the optimized results under an external load of a higher frequency
Loadingdirection Cd0/J $ {\text{μ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J $ {\text{σ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J J/J cv fixed 0.816 4 1.090 4 0.079 1 1.248 6 0.072 5 uncertain 0.908 0 0.896 8 0.015 8 0.928 4 0.017 6 different ratio/% 11.220 0 −17.755 0 −80.025 3 −25.644 7 −75.724 1 表 5 结构拓扑优化结果对比
Table 5. Comparison of the optimized results
Loading direction Cd0/J $ {\text{μ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J $ {\text{σ}}_{{\text{C}}_{\text{d}}\text{(}\text{θ}\text{)}} $/J cv (10−2) fixed 2.967 7 3.001 2 0.047 5 1.581 7 uncertain β = 1 3.085 4 2.989 7 0.006 6 0.220 8 different ratio/% 3.631 2 −0.383 9 −86.097 1 −86.043 5 uncertain β = 2 3.008 9 2.995 8 0.004 5 0.149 3 different ratio/% 1.389 2 −0.180 7 −90.577 0 −90.559 9 -
[1] Sigmund O, Maute K. Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055 doi: 10.1007/s00158-013-0978-6 [2] Zargham S, Ward TA, Ramli R, et al. Topology optimization: A review for structural designs under vibration problems. Structural and Multidisciplinary Optimization, 2016, 53(6): 1157-1177 doi: 10.1007/s00158-015-1370-5 [3] 江旭东, 武子旺, 滕晓艳. 局部有限寿命疲劳约束条件下的结构拓扑优化方法. 振动与冲击, 2023, 42(16): 110-119 (Jiang Xudong, Wu Ziwang, Teng Xiaoyan. Structural topology optimization with local finite-life fatigue constraints. Journal of Vibration and Shock, 2023, 42(16): 110-119 (in Chinese) doi: 10.13465/j.cnki.jvs.2023.16.013Jiang Xudong, Wu Ziwang, Teng Xiaoyan. Structural topology optimization with local finite-life fatigue constraints. Journal of Vibration and Shock, 2023, 42(16): 110-119 (in Chinese)) doi: 10.13465/j.cnki.jvs.2023.16.013 [4] Wang D, Gao WF. Robust topology optimization under load position uncertainty. International Journal for Numerical Methods in Engineering, 2019, 120(11): 1249-1272 doi: 10.1002/nme.6180 [5] Zhao RJ, Zhao JP, Wang CJ. Stress-constrained concurrent topology optimization of two-scale hierarchical structures. International Journal for Numerical Methods in Engineering, 2021, 122(21): 6126-6154 [6] Mejías G, Zegard T. Simultaneous discrete and continuum multiresolution topology optimization. Structural and Multidisciplinary Optimization, 2023, 66: 137 doi: 10.1007/s00158-023-03592-y [7] 文桂林, 刘杰, 陈梓杰等. 非线性连续体拓扑优化方法综述. 力学学报, 2022, 54(10): 2659-2675 (Wen Guilin, Liu Jie, Chen Zijie, et al. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675 (in Chinese)Wen Guilin, Liu Jie, Chen Zijie, et al. A survey of nonlinear continuum topology optimization methods. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675 (in Chinese)) [8] Yang B, Cheng CZ, Wang X, et al. Robust reliability-based topology optimization for stress-constrained continuum structures using polynomial chaos expansion. Structural and Multidisciplinary Optimization, 2023, 66: 88 doi: 10.1007/s00158-023-03555-3 [9] 王栋. 载荷作用位置不确定条件下结构动态稳健性拓扑优化设计. 力学学报, 2021, 53(5): 1439-1448 (Wang Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448 (in Chinese)Wang Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448 (in Chinese) [10] Agrawal G, Gupta A, Chowdhury R, et al. Robust topology optimization of negative Poisson’s ratio metamaterials under material uncertainty. Finite Elements in Analysis and Design, 2022, 198: 103649 doi: 10.1016/j.finel.2021.103649 [11] Cai JH, Wang CJ, Fu ZF. Robust concurrent topology optimization of multiscale structure under single or multiple uncertain load cases. International Journal for Numerical Methods in Engineering, 2020, 121: 1456-1483 doi: 10.1002/nme.6275 [12] Oh MK, Lee DS, Yoo J. Stress constrained topology optimization simultaneously considering the uncertainty of load positions. International Journal for Numerical Methods in Engineering, 2022, 123: 339-365 doi: 10.1002/nme.6858 [13] Li H, Li H, Xiao M, et al. Robust topology optimization of thermoelastic metamaterials considering hybrid uncertainties of material property. Composite Structures, 2020, 248: 112477 doi: 10.1016/j.compstruct.2020.112477 [14] 王栋, 高伟峰. 载荷位置不确定条件下结构稳健性拓扑优化设计. 应用力学学报, 2020, 37(3): 969-974 (Wang Dong, Gao Weifeng. Robust topology optimization of continuum structures with load position uncertainty. Chinese Journal of Applied Mechanics, 2020, 37(3): 969-974 (in Chinese)Wang Dong, Gao Weifeng. Robust topology optimization of continuum structures with load position uncertainty. Chinese Journal of Applied Mechanics, 2020, 37(3): 969-974 (in Chinese) [15] Lia ZS, Wang L, Luo ZX. A feature-driven robust topology optimization strategy considering movable non-design domain and complex uncertainty. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 115658 doi: 10.1016/j.cma.2022.115658 [16] Kranz M, Lüdeker JK, Kriegesmann B. A generalized approach for robust topology optimization using the first-order second-moment method for arbitrary response functions. Structural and Multidisciplinary Optimization, 2023, 66: 98 doi: 10.1007/s00158-023-03540-w [17] Zhang XP, Kang Z, Zhang WB. Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis. Structural and Multidisciplinary Optimization, 2016, 54(6): 1469-1484 doi: 10.1007/s00158-016-1607-y [18] Wang D, Gao WF. Robust topology optimization under multiple independent uncertainties of loading positions. International Journal for Numerical Methods in Engineering, 2020, 121(22): 4944-4970 doi: 10.1002/nme.6503 [19] Jeong S, Seong HK, Kim CW, et al. Structural design considering the uncertainty of load positions using the phase field design method. Finite Elements in Analysis and Design, 2019, 161(1): 1-15 [20] 罗阳军, 亢战. 连续体结构非概率可靠性拓扑优化. 力学学报, 2011, 43(1): 227-234 (Luo Yangjun, Kang Zhan, Deng Zichen. Robust topology optimization design of structures with multiple load cases. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 227-234 (in Chinese)Luo Yangjun, Kang Zhan, Deng Zichen. Robust topology optimization design of structures with multiple load cases. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 227-234 (in Chinese) [21] Kharmanda G, Olhoff N, Mohamed A, et al. Reliability-based topology optimization. Structural and Multidisciplinary Optimization, 2004, 26: 295-307 doi: 10.1007/s00158-003-0322-7 [22] Kanakasabai P, Dhingra AK. An efficient approach for reliability-based topology optimization. Engineering Optimization, 2016, 48(1): 1–15 [23] Lógó J, Ghaemi M, Rad MM. Optimal topologies in case of probabilistic load: The influence of load correlation. Mechanics Based Design of Structures and Machines, 2009, 37(3): 327-348 doi: 10.1080/15397730902936328 [24] 王选, 时元昆, 杨博等. 基于响应面方法的破损−安全结构可靠性拓扑优化. 力学学报, 2023, 55(5): 1206-1216 (Wang Xuan, Shi Yuankun, Yang Bo, et al. Reliability-based topology optimization of fail-safe structures using response surface method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1206-1216 (in Chinese)Wang Xuan, Shi Yuankun, Yang Bo, Cheng Changzheng, Long Kai. Reliability-based topology optimization of fail-safe structures using response surface method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1206-1216 (in Chinese) [25] Kanno Y. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance. Structural and Multidisciplinary Optimization, 2020, 62: 979-1000 doi: 10.1007/s00158-020-02503-9 [26] Zhao JP, Wang CJ. Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Computer Methods in Applied Mechanics and Engineering. 2014, 273: 204–218 [27] Wu JL, Gao J, Luo Z, et al. Robust topology optimization for structures under interval uncertainty. Advances in Engineering Software, 2016, 99: 36-48 [28] Kriegesmann B, Lüdeker JK. Robust compliance topology optimization using the first-order second-moment method. Structural and Multidisciplinary Optimization, 2019, 60: 269-286 [29] Wang D. Effects of design sensitivity schemes for incorporating loading uncertainty in robust topology optimization. Engineering Optimization, 2023, 55(2): 344-361 [30] Cai JH, Huang L, Wu HY, et al. Concurrent topology optimization of multiscale structure under uncertain dynamic loads. International Journal of Mechanical Sciences, 2023, 251: 108355 doi: 10.1016/j.ijmecsci.2023.108355 [31] Svanberg K. The method of moving asymptotes – A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207 [32] Tsitsiklis JN, Bertsekas DP. Introduction to Probability. Belmont: Athena Scientific, 2008 -