EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于POD方法的EPR燃料棒流致振动特性分析

闵光云 冯琳娜 姜乃斌

闵光云, 冯琳娜, 姜乃斌. 基于POD方法的EPR燃料棒流致振动特性分析. 力学学报, 2023, 55(11): 1-11 doi: 10.6052/0459-1879-23-243
引用本文: 闵光云, 冯琳娜, 姜乃斌. 基于POD方法的EPR燃料棒流致振动特性分析. 力学学报, 2023, 55(11): 1-11 doi: 10.6052/0459-1879-23-243
Min Guangyun, Feng Linna, Jiang Naibin. Flow-induced vibration characteristics analysis of epr fuel rods based on pod method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 1-11 doi: 10.6052/0459-1879-23-243
Citation: Min Guangyun, Feng Linna, Jiang Naibin. Flow-induced vibration characteristics analysis of epr fuel rods based on pod method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 1-11 doi: 10.6052/0459-1879-23-243

基于POD方法的EPR燃料棒流致振动特性分析

doi: 10.6052/0459-1879-23-243
基金项目: 国家自然科学基金(11872060); 广东省重点领域研发计划(2021B0101250002)资助项目
详细信息
    通讯作者:

    姜乃斌, 教授, 主要研究方向为反应堆结构力学. E-mail: jiangnb@mail.sysu.edu.cn

  • 中图分类号: TL352

FLOW-INDUCED VIBRATION CHARACTERISTICS ANALYSIS OF EPR FUEL RODS BASED ON POD METHOD

  • 摘要: EPR (European pressurized reactor)燃料棒相比M310燃料棒的棒长更长, 导致其频率降低、幅值增大, 在冷却剂的作用下, 会加剧格架与棒束之间微动磨损(Grid-To-Rod Fretting, GTRF), 进而造成放射性物质的泄漏. 将EPR燃料棒简化为3D梁模型, 将刚凸和弹簧对燃料棒的约束等效为弹性约束, 将带格架的燃料棒简化为多跨连续简支梁模型, 然后基于ANSYS-APDL建立了EPR燃料棒的有限元模型. 阐述了湿模态分析和湍流激振响应分析的基本原理, 整理了12个格架失效工况, 系统地研究了格架失效对湿模态和湍流激振响应的影响. 针对EPR燃料棒流致振动问题, 提出了采用本征正交分解(proper orthogonal decomposition, POD)原理分析EPR燃料棒流致振动特性的方法, 通过对快照矩阵进行POD分解生成投影子空间, 将湍流激振响应投影到子空间进行模型降阶, 最后在物理空间快速地重构湍流激振响应. 结果表明: 格架失效会导致频率降低, 且湍流激振响应的幅值会在格架失效处增大; 当格架失效使得EPR燃料棒模型成为悬臂梁结构时, 湍流激振响应最大; 前2阶POD降阶模型基本能快速重构燃料棒的湍流激振响应, 且误差非常小. 本文的研究将有助于核反应堆工程的优化和设计.

     

  • 图  1  AFA-3 G LE燃料组件示意图

    Figure  1.  Schematic of AFA-3 G LE fuel assembly

    图  2  EPR燃料棒示意图

    Figure  2.  Schematic of the EPR fuel rod

    图  3  燃料棒受定位格架约束的示意图

    Figure  3.  Schematic of a fuel rod constrained by grid

    图  4  弹性约束示意图

    Figure  4.  Schematic of elastic constraints

    图  5  EPR燃料棒的多跨连续简支梁示意图

    Figure  5.  Schematic of a multi-span continuous simply supported beam of EPR fuel

    图  6  燃料棒的1阶模态

    Figure  6.  1 th-order mode of fuel rod

    图  7  格架失效和无格架失效下的1阶固有频率

    Figure  7.  1 th-order frequency under grid failure and no grid failure

    图  8  EPR燃料棒的湍流激振响应

    Figure  8.  Response of EPR fuel rod

    图  9  前12阶POD模态对应的特征值

    Figure  9.  Eigenvalues of the first 12 POD modes

    图  10  EPR燃料棒的1阶模态

    Figure  10.  1 th-order mode of EPR fuel rod

    图  11  前12阶POD模态对应的特征值

    Figure  11.  Eigenvalues of the first 12 POD modes

    图  12  EPR燃料棒的湍流激振响应 (续)

    Figure  12.  Response of EPR fuel rod (continued)

    表  1  失效工况

    Table  1.   Failure working conditions

    Working ConditionIntroduction
    C.1spring and dimple failure of grid 1
    C.2spring and dimple failure of grid 2
    C.3spring and dimple failure of grid 3
    C.4spring and dimple failure of grid 4
    C.5spring and dimple failure of grid 5
    C.6spring and dimple failure of grid 6
    C.7spring and dimple failure of grid 7
    C.8spring and dimple failure of grid 8
    C.9spring and dimple failure of grid 9
    C.10spring and dimple failure of grid 10
    C.11spring and dimple failure of grid 11
    C.12spring and dimple failure of grid 1 and 2
    下载: 导出CSV

    表  2  质量参数

    Table  2.   Mass parameter

    ParameterValue
    top end plug1.384 kg/m
    gas chamber0.215 kg/m
    fuel pellet0.795 kg/m
    bottom end plug1.052 kg/m
    下载: 导出CSV
  • [1] Salachna J, Cioncolini A, Iacovides H. Benchmark simulation of the flow-induced vibrations for nuclear applications. Annals of Nuclear Energy, 2023, 180: 109425 doi: 10.1016/j.anucene.2022.109425
    [2] 颜雄, 魏莎, 毛晓晔等. 两端弹性支承输流管道固有特性研究. 力学学报, 2022, 54(5): 1341-1352 (Yan Xiong, Wei Sha, Mao Xiaoye, et al. Study on natural characteristics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352 (in Chinese)

    Yan Xiong, Wei Sha, Mao Xiaoye, et al. Study on natural characteristics of fluid-conveying pipes with elastic supports at both ends. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1341-1352. (in Chinese))
    [3] Amirian R, Zarepoor G R, Talebi M. Numerical simulation and validation of flow-induced vibration of the specific rod under elastic supports using one-way fluid-solid interaction. Journal of Applied Fluid Mechanics, 2023, 16(5): 1044-1056
    [4] 姜乃斌, 熊夫睿, 冯志鹏等. 动力与过程装备部件的流致振动: 实用工作手册. 上海: 上海交通大学出版社, 2020

    Jiang Naibin, Xiong Furui, Feng Zhipeng, et al. Flow-induced vibration of power and process plant components: A Practical Workbook. Shang Hai: Shanghai Jiao Tong University Press, 2020(in Chinese))
    [5] Qin S, Ren Q, Liu H, et al. Numerical investigations on flow-induced vibration characteristics of wire-wrapped fuel rod. Progress in Nuclear Energy, 2022, 148: 104223 doi: 10.1016/j.pnucene.2022.104223
    [6] 高李霞, 李朋洲, 赖姜等. 反应堆结构的磨蚀研究现状. 核动力工程, 2016, 37(S2): 73-76 (Gao Lixia, Li Pengzhou, Lai Jiang, et al. Status for fretting-wear study of nuclear structural components. Nuclear Power Engineering, 2016, 37(S2): 73-76 (in Chinese) doi: 10.13832/j.jnpe.2016.S2.0073

    Gao Lixia, Li Pengzhou, Lai Jiang, et al. Status for fretting-wear study of nuclear structural components. Nuclear Power Engineering, 2016, 37(S2 ): 73-76. (in Chinese)) doi: 10.13832/j.jnpe.2016.S2.0073
    [7] Simoneau J P, Sageaux T, Moussallam N, et al. Fluid structure interaction between rods and a cross flow-Numerical approach. Nuclear Engineering and Design, 2011, 241(11): 4515-4522 doi: 10.1016/j.nucengdes.2011.02.035
    [8] Kim K T. The study on grid-to-rod fretting wear models for PWR fuel. Nuclear Engineering and Design, 2009, 239(12): 2820-2824 doi: 10.1016/j.nucengdes.2009.08.018
    [9] Kim K T. The effect of fuel rod supporting conditions on fuel rod vibration characteristics and grid-to-rod fretting wear. Nuclear Engineering and Design, 2010, 240(6): 1386-1391 doi: 10.1016/j.nucengdes.2009.12.030
    [10] 齐欢欢, 冯志鹏, 姜乃斌等. 格架松弛对燃料棒湍流激励及微振磨损的影响研究. 原子能科学技术, 2018, 52(10): 1810-1816 (Qi Huanhuan, Feng Zhipeng, Jiang Naibin, et al. Effect of grid relaxation on turbulence excitation and fretting wear of fuel rod. Atomic Energy Science and Technology, 2018, 52(10): 1810-1816 (in Chinese) doi: 10.7538/yzk.2018.youxian.0066

    Qi Huanhuan, Feng Zhipeng, Jiang Naibin, et al. Effect of grid relaxation on turbulence excitation and fretting wear of fuel rod. Atomic Energy Science and Technology, 2018, 52(10): 1810-1816. (in Chinese)) doi: 10.7538/yzk.2018.youxian.0066
    [11] 齐欢欢, 冯志鹏, 姜乃斌等. 格架夹持失效对燃料棒流弹稳定性及漩涡脱落影响的数值研究. 核动力工程, 2018, 39(4): 182-186 (Qi Huanhuan, Feng Zhipeng, Jiang Naibin, et al. Numerical study on effect of clamping failure on flow induced vibration and fretting wear analysis of fuel rods. Nuclear Power Engineering, 2018, 39(4): 182-186 (in Chinese) doi: 10.13832/j.jnpe.2018.04.0182

    Qi Huanhuan, Feng Zhipeng, Jiang Naibin, et al. Numerical study on effect of clamping failure on flow induced vibration and fretting wear analysis of fuel rods. Nuclear Power Engineering, 2018, 39(4): 182-186. (in Chinese)) doi: 10.13832/j.jnpe.2018.04.0182
    [12] 毛景礼. 5 × 5棒束定位格架流致振动特性研究. [硕士论文]. 哈尔滨工程大学, 2013

    Mao Jingli. Study on flow-induced vibration of 5 × 5 rod bundles with spacer grids. [Master's Thesis]. Harbin engineering university, 2013. (in Chinese))
    [13] Liu H, Chen D, Hu L, et al. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow. Nuclear Engineering and Design, 2017, 325(2017): 68-77
    [14] 陈德奇, 刘海东, 黄彦平等. 带格架5 × 5燃料棒束流致振动特性数值研究. 原子能科学技术, 2018, 52(5): 954-960 (Chen Deqi, Liu Haidong, Huang Yanping, et al. Numerical study on flow-induced vibration characteristics of 5 × 5 rod bundle with spacer grid. Atomic Energy Science and Technology, 2018, 52(5): 954-960 (in Chinese) doi: 10.7538/yzk.2018.52.05.0954

    Chen Deqi, Liu Haidong, Huang Yanping, et al. Numerical study on flow-induced vibration characteristics of 5 × 5 rod bundle with spacer grid. Atomic Energy Science and Technology, 2018, 52(5): 954-960. (in Chinese)) doi: 10.7538/yzk.2018.52.05.0954
    [15] 马玉琢, 黄美, 黄继缘等. 冷却剂与含格架燃料棒束多场耦合分析. 原子能科学技术, 2020, 54(8): 1371-1377 (Ma Yuzhuo, Huang Mei, Huang Jiyuan, et al. Multi-field coupling analysis on coolant and fuel rod bundle with grid spacer. Atomic Energy Science and Technology, 2020, 54(8): 1371-1377 (in Chinese) doi: 10.7538/yzk.2019.youxian.0531

    Ma Yuzhuo, Huang Mei, Huang Jiyuan, et al. Multi-field coupling analysis on coolant and fuel rod bundle with grid spacer. Atomic Energy Science and Technology, 2020, 54(8): 1371-1377. (in Chinese)) doi: 10.7538/yzk.2019.youxian.0531
    [16] Feeny B F, Kappagantu R. On the physical interpretation of proper orthogonal modes in vibrations. Journal of Sound and Vibration, 1998, 211(4): 607-6617 doi: 10.1006/jsvi.1997.1386
    [17] Liang Y C, Lee H P, Lim S P, et al. Proper orthogonal decomposition and its applications-part I: Theory. Journal of Sound and Vibration, 2002, 252(3): 527-544 doi: 10.1006/jsvi.2001.4041
    [18] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析. 航空学报, 2016, 37(9): 2679-2689 (Kou Jiaqing, Zhang Weiwei, Gao Chuanqiang. Modal analysis of transonic buffet based on POD and DMD method. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689 (in Chinese) doi: 10.7527/S1000-6893.2016.0003

    Kou Jiaqing, Zhang Weiwei, Gao Chuanqiang. Modal analysis of transonic buffet based on POD and DMD method. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689. (in Chinese)) doi: 10.7527/S1000-6893.2016.0003
    [19] 李凯, 杨静媛, 高传强, 等. 基于POD和代理模型的静气动弹性分析方法. 力学学报, 2023, 55(2): 299-308 (Li Kai, Yang Jingyuan, Gao Chuanqiang, et al. Static aeroelastic analysis based on proper orthogonal decomposition and surrogate model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308 (in Chinese) doi: 10.6052/0459-1879-22-523

    Li Kai, Yang Jingyuan, Gao Chuanqiang, et al. Static aeroelastic analysis based on proper orthogonal decomposition and surrogate model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308(in Chinese)) doi: 10.6052/0459-1879-22-523
    [20] 孙翀, 石磊, 沈昕等. 风力机翼型在失速工况下非定常流场的本征正交分解分析. 工程热物理学报, 2021, 42(4): 894-904 (Sun Chong, Shi Lei, Shen Xin, et al. Analysis of POD for the flow field of the wind turbine airfoil at high angle of attack. Journal of Engineering Thermophysics, 2021, 42(4): 894-904 (in Chinese)

    Sun Chong, Shi Lei, Shen Xin, et al. Analysis of POD for the flow field of the wind turbine airfoil at high angle of attack. Journal of Engineering Thermophysics, 2021, 42(4): 894-904. (in Chinese))
    [21] 郭子漪, 赵建福, 李凯等. 基于 POD-Galerkin 降维方法的热毛细对流分岔分析. 力学学报, 2022, 54(5): 1186-1198 (Guo Ziyi, Zhao Jianfu, Li Kai, et al. Bifurcation analysis of thermocapillary convection based on POD-Galerkin reduced-order method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198 (in Chinese)

    Guo Ziyi, Zhao Jianfu, Li Kai, et al. Bifurcation analysis of thermocapillary convection based on POD-Galerkin reduced-order method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198. (in Chinese))
    [22] 魏代同, 陈星, 陈玉刚等. 基于本征正交分解的叶片碰摩系统降阶方法. 航空动力学报, 2022, 37(4): 711-720 (Wei Daitong, Chen Xing, Chen Yugang, et al. Reduced order method of blade rubbing system based on proper orthogonal decomposition. Journal of Aerospace Power, 2022, 37(4): 711-720 (in Chinese)

    Wei Daitong, Chen Xing, Chen Yugang, et al. Reduced order method of blade rubbing system based on proper orthogonal decomposition. Journal of Aerospace Power, 2022, 37(4): 711-720. (in Chinese))
    [23] 李玉韦, 郝鹏, 王博等. 基于本征正交分解的网格加筋筒壳模型降阶方法. 固体力学学报, 2019, 40(4): 334-341 (Li Yuwei, Hao Peng, Wang Bo, et al. A model reduction method based on proper orthogonal decomposition for stiffened shells. Chinese Journal of Solid Mechanics, 2019, 40(4): 334-341 (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2019.015

    Li Yuwei, Hao Peng, Wang Bo, et al. A model reduction method based on proper orthogonal decomposition for stiffened shells. Chinese Journal of Solid Mechanics, 2019, 40(4): 334-341. (in Chinese)) doi: 10.19636/j.cnki.cjsm42-1250/o3.2019.015
    [24] Wang Y, Ma HH, Cai WH, et al. A POD-Galerkin reduced-order model for two-dimensional Rayleigh-Bénard convection with viscoelastic fluid. International Communications in Heat and Mass Transfer, 2020, 117: 104747 doi: 10.1016/j.icheatmasstransfer.2020.104747
    [25] 余波, 陶盈盈. 基于POD-RBF方法的管道内壁几何识别. 应用数学和力学, 2023, 44(4): 406-418 (Yu Bo, Tao Yingying. Identification of pipeline inner wall geometry based on the POD-RBF method. Applied Mathematics and Mechanics, 2023, 44(4): 406-418 (in Chinese)

    Yu Bo, Tao Yingying. Identification of pipeline inner wall geometry based on the POD-RBF method. Applied Mathematics and Mechanics, 2023, 44(4): 406-418. (in Chinese)
    [26] 金晓威, 赖马树金, 李惠. 物理增强的流场深度学习建模与模拟方法. 力学学报, 2021, 53(10): 2616-2629 (Jin Xiaowei, Laima Shujin, Li Hui. Physics-enhanced deep learning methods for modelling and simulating flow fields. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2616-2629 (in Chinese) doi: 10.6052/0459-1879-21-373

    Jin Xiaowei, Laima Shujin, Li Hui. Physics-enhanced deep learning methods for modelling and simulating flow fields. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2616-2629. (in Chinese)) doi: 10.6052/0459-1879-21-373
    [27] Crowell A R, Mcnamara J J. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticity. AIAA Journal, 2012, 50(1): 74-84 doi: 10.2514/1.J051094
    [28] Chen X, Liu L, Long T, et al. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD. Chinese Journal of Aeronautics, 2015, 28(5): 1328-1342 doi: 10.1016/j.cja.2015.06.024
    [29] 朱强华, 杨恺, 梁钰等. 基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法. 力学学报, 2020, 52(1): 124-138 (Zhu Qianghua, Yang Kai, Liang Yu, et al. A novel fast algorithm based on model order reduction for one class of transient nonlinear heat conduction problem. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 124-138 (in Chinese) doi: 10.6052/0459-1879-19-323

    Zhu Qianghua, Yang Kai, Liang Yu, et al. A novel fast algorithm based on model order reduction for one class of transient nonlinear heat conduction problem. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 124-138. (in Chinese)) doi: 10.6052/0459-1879-19-323
    [30] 姚波, 向文欣, 王鹏, 等. AFA3 G LE燃料组件的结构特点和设计论证. 核动力工程, 2015, 36(S1): 40-43 (Yao Bo, Xiang Wenxin, Wang Peng, et al. Structure features and design qualification of AFA3 G LE fuel assembly. Nuclear Power Engineering, 2015, 36(S1): 40-43 (in Chinese)

    Yao Bo, Xiang Wenxin, Wang Peng, et al. Structure features and design qualification of AFA3 G LE fuel assembly[J]. Nuclear Power Engineering, 2015, 36(S1): 40-43. (in Chinese))
    [31] 姜乃斌, 冯志鹏, 臧峰刚, 等. 核工程中的流致振动理论与应用. 上海: 上海交通大学出版社, 2018

    Jiang Naibin, Feng Zhipeng, Zang Fenggang, et al. Theory and Application of Flow-induced Vibration in Nuclear Engineering. Shanghai: Jiao Tong University Press, 2018. (in Chinese
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-09-14

目录

    /

    返回文章
    返回