INLET SYNTHETIC TURBULENCE GENERATION METHOD FOR COMPRESSIBLE BOUNDARY LAYER
-
摘要: 在壁湍流中开展RANS-LES方法混合模拟时, 入口处添加合理的湍流脉动能够缩短流场向完全湍流的发展距离, 提高数值模拟精度以及节省计算资源. 采用SA-IDDES方法对槽道湍流和可压缩湍流边界层开展了数值模拟研究, 对比了3种较为常用的合成湍流方法对流场发展的影响, 包括合成湍流生成器(STG)、数字滤波法(DFM)和合成涡方法(SEM); 研究了不同合成湍流入口条件下流场壁面摩阻、流场结构、雷诺应力的发展过程, 评估了各方法在壁湍流中的表现. 其中在不可压槽道湍流和可压缩湍流边界层的模拟中, STG方法展现了较短的摩阻恢复距离, 流场结构与雷诺应力发展相比DFM也有一定的优势. 在高马赫数湍流边界层的数值模拟中, 忽略热力学量脉动可能会降低合成边界层脉动恢复到物理真实脉动的速度. 因此, 文章进一步基于STG给出的速度脉动, 在入口处通过若干强雷诺比拟方法(SRA、GSRA和HSRA)添加热力学脉动量, 对比研究了对可压缩湍流边界层流场发展的影响, 结果显示是否添加热力学脉动对于流场摩阻和雷诺应力发展影响较小, 但对流场中的热力学量影响显著, 其中GSRA下流场热力学量恢复得最快.Abstract: In the RANS-LES hybrid simulation of turbulent boundary layers, adding reasonable turbulent fluctuations at the inlet can shorten the recovery distance of the flow field to fully developed turbulent flow, improve the simulation accuracy and efficiency. In this paper, the SA-IDDES method is used to the research on numerical simulation study of channel turbulence and compressible turbulent boundary layer. And three commonly turbulence synthetic methods are compared , including synthetic turbulence generator (STG), digital filter method (DFM) and synthetic eddy method (SEM). The development of wall friction, flow structure and Reynolds stress under different synthetic turbulence inflow conditions is studied, and the performance of each method is evaluated in wall turbulence. In the simulation of incompressible and compressible turbulent boundary layers, STG method shows the shorter recovery distance. The flow field structure and Reynolds stress development of STG also have advantages over DFM. In addition to velocity fluctuations, compressible turbulent boundary layer also includes fluctuations of thermodynamic variables such as temperature, density and pressure. Furthermore, in the numerical simulation of turbulent boundary layer in high Mach number, ignoring the thermodynamic fluctuations may reduce the speed at which the boundary layer return to fully-developed turbulence flow. The ST method can only provide velocity fluctuations, while the strong Reynolds analogy methods can obtain thermodynamic fluctuations based on velocity fluctuations. Therefore, based on the velocity fluctuations given by STG, thermodynamic fluctuation is added at the inlet by several strong Reynolds analogy methods (SRA, GSRA, HSRA), and the effects on the development of compressible turbulent boundary layer are evaluated. The results show that the addition of thermodynamic fluctuation has little effect on the development of friction and Reynolds stress, but has a significant effect on the development of thermodynamic quantities in the flow field. Among them, using GSRA generating thermodynamic fluctuation as inlet boundary condition has the fastest thermodynamic recovery.
-
表 1 来流条件
Table 1. Inlet conditions
来流速度 来流雷诺数${{Re} _\theta }$ 来流温度Tinf/K 壁面温度Tw/K Ma = 2.5 1200 228.0 300.0 表 2 来流条件
Table 2. Inlet conditions
来流速度 来流雷诺数${{Re} _\theta }$ 来流温度
Tinf/K壁面温度
Tw/KMa = 5.0 2300 228.1 433.4 表 3 入口条件中强雷诺比拟系数表
Table 3. SRA’s coefficients
a c 强雷诺比拟
(SRA)0.0 1.0 Gaviglio’s强雷诺比拟
(GSRA)1.0 1.0 Huang’s强雷诺比拟
(HSRA)1.0 0.7 -
[1] 陈坚强, 张益荣, 郭勇颜等. 高超声速流动数值模拟方法及应用. 北京 科学出版社, 2019 (in Chinese [2] Ngoh H, Poggie J. Detached eddy simulation of blunt-fin-induced shock-wave/boundary-layer interaction. AIAA Journal, 2022, 60(4): 2097-2114 doi: 10.2514/1.J061102 [3] Pont-Vílchez A, Duben A, Gorobets A, et al. New strategies for mitigating the gray area in delayed-detached eddy simulation models. AIAA Journal, 2021, 59(9): 3331-3345 doi: 10.2514/1.J059666 [4] Coskun S, Pachidis V, Ubulom I, et al. Improved delayed detached eddy simulations applied to a naca0015 aerofoil subject to acoustic excitation//AIAA AVIATION 2022 Forum. Chicago, IL & Virtual: American Institute of Aeronautics and Astronautics, 2022 [5] 袁先旭, 陈坚强, 杜雁霞等. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展. 航空学报, 2021, 42(9): 625733-625733 (Yuan Xianxu, Chen Jianqiang, Du Yanxia, et al. Research progress on fundamental CFD issues in national numerical windtunnel project. Acta Aeronauticaet Astronautica Sinica, 2021, 42(9): 625733-625733 (in Chinese) Yuan Xianxu, Chen Jianqiang, Du Yanxia, et al . Research progress on fundamental CFD issues in national numerical windtunnel project. Acta Aeronauticaet Astronautica Sinica,2021 ,42 (9 ):625733 -625733 (in Chinese)[6] Tabor GR, Baba-Ahmadi MH. Inlet conditions for large eddy simulation: A review. Computers & Fluids, 2010, 39(4): 553-567 [7] Wu X. Inflow turbulence generation methods. Annual Review of Fluid Mechanics, 2017, 49: 23-49 doi: 10.1146/annurev-fluid-010816-060322 [8] Dhamankar NS, Blaisdell GA, Lyrintzis AS. Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA Journal, 2018, 56(4): 1317-1334 doi: 10.2514/1.J055528 [9] Xue X, Yao HD, Davidson L. Synthetic turbulence generator for lattice Boltzmann method at the interface between RANS and LES. Physics of Fluids, 2022, 34(5): 055118 doi: 10.1063/5.0090641 [10] Shur ML, Spalart PR, Strelets K, et al. Synthetic turbulence generators for RANS/LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbulence and Combustion. 2014, 93: 63-92 [11] Guo QL, Liu PX, Li C, et al. On the characteristic length scale for the synthetic turbulence based on the spalart-allmaras model. Advances in Applied Mathematics and Mechanics, (https://global-sci.org/intro/online/read?online_id = 1970 [12] Jarrin N, Benhamadouche S, Laurence D, et al. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow, 2006, 27(4): 585-593 doi: 10.1016/j.ijheatfluidflow.2006.02.006 [13] Jarrin N, Prosser R, Uribe J C, et al. Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. International Journal of Heat and Fluid Flow, 2009, 30(3): 435-442 doi: 10.1016/j.ijheatfluidflow.2009.02.016 [14] Volpiani PS. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium. Shock Waves, 2021, 31(4): 361-378 doi: 10.1007/s00193-021-01018-6 [15] Li J, Yu M, Sun D, et al. Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers. Physics of Fluids, 2022, 34(8): 085102 doi: 10.1063/5.0100416 [16] Martín M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. Journal of Fluid Mechanics, 2007, 570: 347-364 [17] Morkovin MV. Effects of compressibility on turbulent flows. Mécanique de la Turbulence, 1962, 367(380): 26 [18] Adler MC, Gonzalez DR, Stack CM, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics. Computers & Fluids, 2018, 165: 127-143 [19] Kianvashrad N, Knight DD. Large eddy simulation of hypersonic cold wall flat plate-Part II//AIAA SCITECH 2022 Forum. San Diego, CA & Virtual: American Institute of Aeronautics and Astronautics, 2022 [20] Castillo GP, Gross A, Guildenbecher DR, et al. Wall-modeled large-eddy simulations of mach 14 turbulent boundary layer - aero-optical distortions//AIAA SCITECH 2023 Forum. National Harbor, MD & Online: American Institute of Aeronautics and Astronautics, 2023 [21] Gaviglio J. Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. International Journal of Heat and Mass Transfer, 1987, 30(5): 911-926 doi: 10.1016/0017-9310(87)90010-X [22] Huang PG, Coleman GN, Bradshaw P. Compressible turbulent channel flows: DNS results and modelling. Journal of Fluid Mechanics, 1995, 305: 185-218 doi: 10.1017/S0022112095004599 [23] Davidson L. Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations. Adv. Appl. Fluid Mech, 2007, 1(1): 1-35 [24] Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics, 2003, 186(2): 652-665 doi: 10.1016/S0021-9991(03)00090-1 [25] Xie ZT, Castro IP. Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow, Turbulence and Combustion, 2008, 81(3): 449-470 doi: 10.1007/s10494-008-9151-5 [26] 郭启龙、李辰、刘朋欣等. 合成湍流对空腔流动RANS-LES混合模拟结果的影响. 空气动力学学报, 2020, 38(5): 980-988 (Guo Qilong, Li Chen, Liu Pengxin, et al. Effect of synthetic turbulence on hybrid RANS-LES simulation of cavity flow. Acta Aerodynamica Sinica, 2020, 38(5): 980-988. (in Chinese) doi: 10.7638/kqdlxxb-2020.0079 Guo Qilong, Li Chen, Liu Pengxin, et al . Effect of synthetic turbulence on hybrid RANS-LES simulation of cavity flow. Acta Aerodynamica Sinica,2020 ,38 (5 ):980 -988 . (in Chinese) doi: 10.7638/kqdlxxb-2020.0079[27] Guo Q, Sun D, Li C, et al. A new discontinuity indicator for hybrid WENO schemes. Journal of Scientific Computing, 2020, 83: 1-33 doi: 10.1007/s10915-020-01189-x [28] Patterson JW, Balin R, Jansen KE. Assessing and improving the accuracy of synthetic turbulence generation. Journal of Fluid Mechanics, 2021, 906: R1 doi: 10.1017/jfm.2020.859 [29] Goodwin GB, Bachman CL, Johnson RF, et al. Synthetic freestream turbulence generation at an inflow boundary condition//AIAA Scitech 2021 Forum. Virtual Event: American Institute of Aeronautics and Astronautics, 2021 [30] Wilcox DC. Turbulence Modeling for CFD. DCW Industries, 2006 [31] Poletto R, Craft T, Revell A. A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES. Flow, Turbulence and Combustion, 2013, 91(3): 519-539 doi: 10.1007/s10494-013-9488-2 [32] Adams NA. Direct numerical simulation of turbulent compression ramp flow. Theoretical and Computational Fluid Dynamics, 1998, 12(2): 109-129 doi: 10.1007/s001620050102 [33] Van Driest ER. Turbulent boundary layer in compressible fluids. Journal of Spacecraft and Rockets, 2003, 40(6): 1012-1012 [34] Pirozzoli S, Bernardini M, Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer. Journal of Fluid Mechanics, 2008, 613: 205-231 doi: 10.1017/S0022112008003005 [35] Zhang YS, Bi WT, Hussain F, et al. A generalized Reynolds analogy for compressible wall-bounded turbulent flows. Journal of Fluid Mechanics, 2014, 739: 392-420 doi: 10.1017/jfm.2013.620 [36] Zhang C, Duan L, Choudhari MM. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA Journal, 2018, 56(11): 4297-4311 doi: 10.2514/1.J057296 [37] Pirozzoli S, Grasso F, Gatski TB. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Physics of Fluids, 2004, 16(3): 530-545 doi: 10.1063/1.1637604 [38] Duan L, Beekman I, MP Martín. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. Journal of Fluid Mechanics, 2010, 655: 419-445 [39] Duan L, MP Martín. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. Journal of Fluid Mechanics, 2011, 684(1): 25-59 [40] Maeder T, Adams NA, Kleiser L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. Journal of Fluid Mechanics, 2001, 429: 187-216 [41] Guarini SE, Moser RD, Shariff K, Wray A. Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. Journal of Fluid Mechanics, 2000, 414(1): 1-33 -