A REVIEW OF NUMERICAL METHODS FOR MODELLING PARTICLE BREAKAGE
-
摘要: 颗粒材料在自然界和工程领域普遍存在, 外载荷作用下颗粒可能发生破碎现象. 颗粒材料的破碎行为会引起其物理力学性质的变化, 给工程和建筑建设带来极大影响. 研究宏、细观尺度下颗粒材料的破碎行为不仅可以揭示颗粒破碎的力学机理, 还对工程领域的安全和正常进行提供保障. 因此, 分析颗粒破碎过程既具有实际工程意义, 又有理论研究价值. 文章综述了颗粒破碎行为研究的数值分析方法, 在基于离散元法理论的数值方法中, 介绍了黏结−破碎法和碎片替代法; 在基于离散元−有限元耦合算法的方法中, 介绍了比例边界有限元法、组合有限元−离散元法和内聚力模型; 此外还详细介绍了近场动力学方法. 文章主要梳理并讨论了以上数值方法的提出、实现过程、发展、关键问题、优势以及这些方法的不足之处. 此外, 针对每一种数值方法回顾了国内外的研究成果以及在工程中的主要应用, 对每种方法重点关注的问题进行了介绍. 最后对目前关于颗粒破碎的数值研究进行总结, 并对今后的发展方向进行简单的展望.Abstract: Granular materials exist widely in nature and engineering fields. Particles may break under external loads. The breakage behavior of granular materials will cause changes in their physical and mechanical properties, which will have a great effect on engineering and construction. The study of the breakage behavior of particles at macro and micro scales can not only reveal the mechanical mechanism of particle breakage, but also provide guarantee for the safety and normal operation of the engineering field. Therefore, the analysis of particle breakage process has both practical engineering significance and theoretical research value. In this paper, the numerical analysis methods of particle breakage behavior are reviewed. Among the numerical methods based on discrete element method (DEM), the bonded particle model (BPM) and fragment replacement method (FRM) are introduced. In the method based on discrete element-finite element coupling algorithm, the proportional boundary finite element method, combined finite element-discrete element method (FDEM) and cohesive zone model (CZM) are introduced. In addition, the Peridynamics (PD) method is introduced in detail. The proposal, implementation process, development, key issues, advantages and disadvantages of the above numerical methods are summarized and discussed. In addition, the research results at home and abroad and the main applications in engineering are reviewed for each numerical method, and the key issues of each method are introduced. Finally, the current numerical research on particle breakage is summarized, and the future development direction is briefly prospected.
-
图 3 单颗粒、三颗粒柱的SMT和DEM图像以及不同荷载水平下实验室规模的压缩试验[26]: (a)初始粒子接触后的状态; (b)颗粒断裂前的状态; (c)粒子断裂后的状态
Figure 3. SMT and DEM images of single-particle and three-particle columns as well as laboratory-scale compression tests under different load levels[26]: (a) State after initial particle contact; (b) the state of particles before fracture; (c) the state of the particle after fracture
-
[1] 张家铭, 汪稔, 张阳明等. 土体颗粒破碎研究进展. 岩土力学, 2003, 24(Supp): 661-665 (Zhang Jiaming, Wang Nian, Zhang Yangming, et al. Advance in studies of soil grain crush. Rock and Soil Mechanics, 2003, 24(Supp): 661-665 (in Chinese)(Zhang Jiamin, Wang Nian, Zhang Yangming, et al. Advance in studies of soil grain crush. Rock and Soil Mechanics, 2003, 24(Supp): 661-665. (in Chinese)). [2] 申存科, 迟世春, 贾宇峰. 颗粒破碎对粗粒料力学特性的影响研究. 水利与建筑工程学报, 2009, 7(2): 5-8 (Sheng Cunke, Chi Shichun, Jia Yufeng. Research on influence of particle breakage on mechanical characteristics of coarse granular materials. Journal of Water Resources and Architectural Engineering, 2009, 7(2): 5-8 (in Chinese)(Sheng Cunke, Chi Shichun, Jia Yufeng. Research on Influence of Particle Breakage on Mechanical Characteristics of Coarse Granular Materials. Journal of Water Resources and Architectural Engineering, 2009, 7(2): 5-8(in Chinese)). [3] 楚锡华, 李锡夔. 离散颗粒多尺度分级模型与破碎模拟. 大连理大学学报, 2006, 46(3): 319-326 (Chu Xihua, Li Xikui. Hierarchical multi—scale discrete particle model and crushing simulation. Journal of Dalian University of Technology, 2006, 46(3): 319-326 (in Chinese)(Chu Xihua, Li Xikui. Hierarchical multi—scale discrete particle model and crushing simulation. Journal of Dalian University of Technology, 2006, 46(3): 319-326(in Chinese)). [4] 刘萌成, 孟锋, 王洋洋. 粗粒料颗粒破碎变化规律大型三轴试验研究. 岩土工程学报, 2020, 42(3): 561-567 (Liu Mengcheng, Meng Feng, Wang Yangyang. Evolution of particle crushing of coarse-grained materials in large-scale triaxial tests. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 561-567 (in Chinese) doi: 10.11779/CJGE202003018(Liu Mengcheng, Meng Feng, Wang Yangyang. Evolution of particle crushing of coarse-grained materials in large-scale triaxial tests. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 561-567(in Chinese)). doi: 10.11779/CJGE202003018 [5] 魏松, 朱俊高, 钱七虎等. 粗粒料颗粒破碎三轴试验研究. 岩土工程学报, 2009, 31(4): 533-538 (Wei Song, Zhu Jungao, Qian Qihu, et al. Particle breakage of coarse-grained materials in triaxial tests. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538 (in Chinese)(Wei Song, Zhu Jungao, Qian Qihu, et al. Particle breakage of coarse-grained materials in triaxial tests. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538(in Chinese)). [6] 邹德高, 田继荣, 刘京茂等. 堆石料三维形状量化及其对颗粒破碎的影响. 岩土力学, 2018, 39(10): 3525-3530 (Zou Degao, Tian Jirong, Liu Jingmao, et al. Three-dimensional shape of rockfill material and its influence on particle breakage. Rock and Soil Mechanics, 2018, 39(10): 3525-3530 (in Chinese)(Zou Degao, Tian Jirong, Liu Jingmao, et al. Three-dimensional shape of rockfill material and its influence on particle breakage. Rock and Soil Mechanics, 2018, 39(10): 3525-3530(in Chinese)). [7] 尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展. 岩土工程学报, 2012, 34(12): 2170-2180 (Yin Zhenyu, Xu Qiang, Hu Wei. Constitutive relations for granular materials considering particle crushing: review and development. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180 (in Chinese)(Yin Zhenyu, Xu Qiang, Hu Wei. Constitutive relations for granular materials considering particle crushing: review and development. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180(in Chinese)). [8] 蔡正银, 李小梅, 关云飞等. 堆石料的颗粒破碎规律研究. 岩土工程学报, 2016, 38(5): 923-929 (Cai Zhengyin, Li Xiaomei, Guan Yunfei, et al. Particle breakage rules of rockfill materials. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929 (in Chinese)(Cai Zhengyin, Li Xiaomei, Guan Yunfei, et al. Particle breakage rules of rockfill materials. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929(in Chinese)). [9] Gao W, Liu X, Hu J, et al. A novel bilinear constitutive law for cohesive elements to model the fracture of pressure-dependent rocks. Rock Mechanics and Rock Engineering, 2022, 55: 521-540 doi: 10.1007/s00603-021-02671-0 [10] Robertson D. Numerical Simulations of Crushable Aggregates. University of Cambridge, 2000. [11] Potyondy DO, Cundall PA. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364 doi: 10.1016/j.ijrmms.2004.09.011 [12] Cheng Y, Bolton M, Nakata Y. Grain crushing and critical states observed in DEM simulations. Powder and Grains, 2005, 2: 1393-1397 [13] 史旦达, 周健, 贾敏才等. 考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟. 岩土工程学报, 2007, 29(5): 736-742 (Shi Danda, Zhou Jian, Jia Mincai, et al. Numerical simulations of particle breakage property of sand under high pressure 1 D compression condition by use of particle flow code. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742 (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.017(Shi Danda, Zhou Jian, Jia Mincai, et al. Numerical simulations of particle breakage property of sand under high pressure 1 D compression condition by use of particle flow code. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736-742(in Chinese)). doi: 10.3321/j.issn:1000-4548.2007.05.017 [14] 刘君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟. 岩土力学, 2008, 29(Supp): 107-112 (Liu Jun, Liu Fuhai, Kong Xianjing. Particle flow code numerical simulation of particle breakage of rockfill. Rock and Soil Mechanics, 2008, 29(Supp): 107-112 (in Chinese)(Liu Jun, Liu Fuhai, Kong Xianjing. Particle flow code numerical simulation of particle breakage of rockfill. Rock and Soil Mechanics, 2008, 29(Supp): 107-112(in Chinese)). [15] Alonso E, Tapias M, Gili J. Scale effects in rockfill behaviour. Géotechnique Letters, 2012, 2(3): 155-160 [16] 姜浩, 徐明. 碎石料应力路径大型三轴试验的离散元模拟研究. 工程力学, 2014, 31(10): 151-157 (Jiang Hao, Xu Ming. Study of stress-path-dependent behavior of rockfills using discrete element method. Engineering Mechanics, 2014, 31(10): 151-157 (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.04.0382(Jiang Hao, Xu Ming. Study of stress-path-dependent behavior of rockfills using discrete element method. Engineering Mechanics, 2014, 31(10): 151-157(in Chinese)). doi: 10.6052/j.issn.1000-4750.2013.04.0382 [17] Lu M, Mcdowell G. Discrete element modelling of ballast abrasion. Géotechnique, 2006, 56(9): 651-655 [18] Lu M, Mcdowell GR. Discrete element modelling of railway ballast under triaxial conditions. Geomechanics and Geoengineering: An International Journal, 2008, 3(4): 257-270 [19] 邵磊, 迟世春, 张勇等. 基于颗粒流的堆石料三轴剪切试验研究. 岩土力学, 2013, 34(3): 711-720 (Shao Lei, Chi Shichun, Zhang Yong, et al. Study of triaxial shear tests for rockfill based on particle flow code. Rock and Soil Mechanics, 2013, 34(3): 711-720 (in Chinese)(Shao Lei, Chi Shi-chun, Zhang Yong, et al. Study of triaxial shear tests for rockfill based on particle flow code. Rock and Soil Mechanics, 2013, 34(3): 711-720(in Chinese)). [20] Kuang D, Long Z, Ogwu I, et al. A discrete element method (DEM)-based approach to simulating particle breakage. Acta Geotechnica, 2021, 17(7): 2751-2764 [21] Kuang D, Long Z, Guo R, et al. Experimental and numerical study on the fragmentation mechanism of a single calcareous sand particle under normal compression. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 2875-2888 2875. [22] Kuang D, Long Z, Guo R, et al. Numerical investigation of the cushion and size effects during single-particle crushing via DEM. Acta Mechanica Solida Sinica, 2020, 33(6): 851-863 851 [23] Kuang D, Long Z, Guo R, et al. Experimental and numerical investigation on size effect on crushing behaviors of single calcareous sand particles. Marine Georesources & Geotechnology, 2021, 39(5): 543-553 [24] 吴二鲁, 朱俊高, 黄维等. 三轴剪切过程中粗粒料颗粒破碎变化规律研究. 岩土工程学报, 2020, 42(12): 2330-2335 (Wu Erlu, Zhu Jungao, Huang Wei, et al. Evolution law of particle breakage of coarse-grained soil during triaxial shearing. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330-2335 (in Chinese)(Wu Erlu, Zhu Jungao, Huang Wei, et al. Evolution law of particle breakage of coarse-grained soil during triaxial shearing. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2330-2335(in Chinese)). [25] De Bono J, Mcdowell G. Particle breakage criteria in discrete-element modelling. Géotechnique, 2016, 66(12): 1014-1027, 1014 [26] Cil M, Alshibli K. 3 D assessment of fracture of sand particles using discrete element method. Géotechnique Letters, 2012, 2(3): 161-166 [27] Wang J, Yan H. On the role of particle breakage in the shear failure behavior of granular soils by DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 832-854 doi: 10.1002/nag.1124 [28] Wang J, Yan H. DEM analysis of energy dissipation in crushable soils. Soils and Foundations, 2012, 52(4): 644-657 doi: 10.1016/j.sandf.2012.07.006 [29] Wang X, Xu W, Zhang B. Breakage characteristics and crushing mechanism of cement materials using point-loading tests and the discrete-element method. Journal of Materials in Civil Engineering, 2014, 26: 992-1002 doi: 10.1061/(ASCE)MT.1943-5533.0000873 [30] Lim W, Mcdowell G. Discrete element modelling of railway ballast. Granular Matter, 2005, 7(1): 19-29 doi: 10.1007/s10035-004-0189-3 [31] Lubbad R, Løset S. A numerical model for real-time simulation of ship–ice interaction. Cold Regions Science and Technology, 2011, 65: 111-127 doi: 10.1016/j.coldregions.2010.09.004 [32] Ji S, Yang D. Ice loads and ice-induced vibrations of offshore wind turbine based on coupled DEM-FEM simulations. Ocean Engineering, 2022, 243: 110197 [33] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰荷载的高性能扩展多面体离散元方法. 力学学报, 2019, 51(6): 1720-1739 (Liu Lu, Yin Zhenyu, Ji Shunying. High-performance dilated polyhedral based dem for ice loads on ship and offshore platform structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739 (in Chinese)(Liu Lu, Yin Zhenyu, Ji Shunying. High-performance dilated polyhedral based dem for ice loads on ship and offshore platform structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739(in Chinese)). [34] 徐永福. 基于颗粒破碎的粗粒土剪切强度的模拟分析. 工程地质学报, 2018, 26(6): 1409-1414 (Xu Yongfu. PFC2 D simulation of rockfill shear strength based on particle fragmentation. Journal of Engineering Geology, 2018, 26(6): 1409-1414 (in Chinese)(Xu Yongfu. PFC2 D simulation of rockfill shear strength based on particle fragmentation. Journal of Engineering Geology, 2018, 26(6): 1409-1414(in Chinese)). [35] Mcdowell G, Harireche O. Discrete element modelling of soil particle fracture. Géotechnique, 2002, 52(2): 131-135 [36] 罗滔, Ooi ET, Chan AHC等. 一种模拟堆石料颗粒破碎的离散元-比例边界有限元结合法. 岩土力学, 2017, 38(5): 1463-1471 (Luo Tao, Ooi ET, Chan AHC, et al. A combined DEM-SBFEM for modelling particle breakage of rock-fill materials. Rock and Soil Mechanics, 2017, 38(5): 1463-1471 (in Chinese)(Luo Tao, Ooi ET, Chan AHC, et al. A combined DEM-SBFEM for modelling particle breakage of rock-fill materials. Rock and Soil Mechanics, 2017, 38(5): 1463-1471(in Chinese)). [37] Åström JA, Herrmann HJ. Fragmentation of grains in a two-dimensional packing. The European Physical Journal B-Condensed Matter and Complex Systems, 1998, 5(3): 551-554 doi: 10.1007/s100510050476 [38] 徐琨, 周伟, 马刚等. 基于离散元法的颗粒破碎模拟研究进展. 岩土工程学报, 2018, 40(5): 880-889 (Xu Kun, Zhou Wei, Ma Gang, et al. Review of particle breakage simulation based on DEM. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889 (in Chinese) doi: 10.11779/CJGE201805013(Xu Kun, Zhou Wei, Ma Gang, et al. Review of particle breakage simulation based on DEM. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889(in Chinese)). doi: 10.11779/CJGE201805013 [39] 徐琨, 周伟, 马刚. 颗粒破碎对堆石料填充特性缩尺效应的影响研究. 岩土工程学报, 2020, 42(6): 1013-1022 (Xu Kun, Zhou Wei, Ma Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022 (in Chinese) doi: 10.11779/CJGE202006004(Xu Kun, Zhou Wei, Ma Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022(in Chinese)). doi: 10.11779/CJGE202006004 [40] Tsoungui O, Vallet D, Charmet JC. Numerical model of crushing of grains inside two-dimensional granular materials. Powder technology, 1999, 105: 190-198 doi: 10.1016/S0032-5910(99)00137-0 [41] Lobo-Guerrero S, Vallejo LE. Analysis of crushing of granular material under isotropic and biaxial stress conditions. Soils and Foundations, 2005, 45(4): 79-87 doi: 10.3208/sandf.45.4_79 [42] Ben-Nun O, Einav I. The role of self-organization during confined comminution of granular materials. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010, 368(1910): 231-247 doi: 10.1098/rsta.2009.0205 [43] 杨贵, 许建宝, 刘昆林. 粗粒料颗粒破碎数值模拟研究. 岩土力学, 2015, 36(11): 3301-3306 (Yang Gui, Xu Jianbao, Liu Kunlin. Numerical simulation of particle breakage of coarse aggregates. Rock and Soil Mechanics, 2015, 36(11): 3301-3306 (in Chinese)(Yang Gui, Xu Jianbao, Liu Kunlin. Numerical simulation of particle breakage of coarse aggregates. Rock and Soil Mechanics, 2015, 36(11): 3301-3306(in Chinese)). [44] McDowell GR, De Bono JP. On the micro mechanics of one-dimensional normal compression. Géotechnique, 2013, 63(11): 895-908 [45] Marketos G, Bolton M. Compaction bands simulated in discrete element models. Journal of structural Geology, 2009, 31(5): 479-490 doi: 10.1016/j.jsg.2009.03.002 [46] Tavares L M, Rodriguez V A, Sousani M, et al. An effective sphere-based model for breakage simulation in DEM. Powder Technology, 2021, 392: 473-488. [47] Tavares L M, Das Chagas A S. A stochastic particle replacement strategy for simulating breakage in DEM. Powder Technology, 2021, 377: 222-232. [48] Ciantia M O, Arroyo M, Calvetti F, et al. An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique, 2015, 65(2): 91-110 [49] Zhou W, Yang L, Ma G, et al. Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granular Matter, 2015, 17(4): 497-509 doi: 10.1007/s10035-015-0571-3 [50] Zhou W, Yang L, Ma G, et al. DEM analysis of the size effects on the behavior of crushable granular materials. Granular Matter, 2016, 18(3): 1-11 [51] Cil M B, Buscarnera G. DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granular Matter, 2016, 18(3): 1-15 [52] Clarke D R, Faber K T. Fracture of ceramics and glasses. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1115-1157 doi: 10.1016/0022-3697(87)90121-1 [53] Li YS, Duxbury PM. From moduli scaling to breakdown scaling: A moment-spectrum analysis. Physical Review B, 1989, 40(7): 4889 doi: 10.1103/PhysRevB.40.4889 [54] Lobo-Guerrero S, Vallejo L. Crushing a weak granular material: experimental numerical analyses. Géotechnique, 2005, 55(3): 245-249 [55] Lobo-Guerrero S, Vallejo LE. Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granular Matter, 2006, 8(3): 195-204 [56] Nakata Y, Hyodo M, Hyde A F, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils and Foundations, 2001, 41(1): 69-82 doi: 10.3208/sandf.41.69 [57] Ben-Nun O, Einav I. A refined DEM study of grain size reduction in uniaxial compression//Proceedings of the 12 th international conference of the international association for computer methods and advances in geomechanics (IACMAG), Goa, India, 2008: 702-708 [58] Russell AR, Wood DM. Point load tests and strength measurements for brittle spheres. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 272-280 doi: 10.1016/j.ijrmms.2008.04.004 [59] Russell AR, Wood DM, Kikumoto M. Crushing of particles in idealised granular assemblies. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1293-1313 doi: 10.1016/j.jmps.2009.04.009 [60] 张科芬, 张升, 滕继东等. 颗粒破碎的三维离散元模拟研究. 岩土力学, 2017, 38(7): 2119-2127 (Zhang Kefen, Zhang Sheng, Teng Jidong, et al. 3 D numerical simulation of particle breakage using discrete element method. Rock and Soil Mechanics, 2017, 38(7): 2119-2127 (in Chinese)(Zhang Kefen, Zhang Sheng, Teng Jidong, et al. 3 D numerical simulation of particle breakage using discrete element method. Rock and Soil Mechanics, 2017, 38(7): 2119-2127(in Chinese)). [61] De Bono JP, Mcdowell GR. DEM of triaxial tests on crushable sand. Granular Matter, 2014, 16(4): 551-562 doi: 10.1007/s10035-014-0500-x [62] Cil M, Alshibli K. 3 D evolution of sand fracture under 1 D compression. Géotechnique, 2014, 64(5): 351-364 [63] Wang B, Martin U, Rapp S. Discrete element modeling of the single-particle crushing test for ballast stones. Computers and Geotechnics, 2017, 88: 61-73 doi: 10.1016/j.compgeo.2017.03.007 [64] 徐可, 黄文雄, 李星月等. 岩质颗粒压缩破碎过程的离散元数值模拟研究. 许昌学院学报, 2018, 37(6): 23-27 (Xu Ke, Huang Wenxiong, Li Xingyue, et al. Discrete element numerical simulation study on the compression and crushing process of rock particle. Journal of Xuchang University, 2018, 37(6): 23-27 (in Chinese)(Ke X U, Wenxiong H, Xingyue L I, et al. Discrete Element Numerical Simulation Study on the Compression and Crushing Process of Rock Particle. Journal of Xuchang University, 2018, 37(6): 23-27. (in Chinese)). [65] Bruchmüller J, Wachem BGMV, Gu S, et al. Modelling discrete fragmentation of brittle particles. Powder Technology, 2011, 208(3): 731-739 doi: 10.1016/j.powtec.2011.01.017 [66] Song C, Wolf JP. The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics. Computer Methods in applied mechanics and engineering, 1997, 147: 329-355 doi: 10.1016/S0045-7825(97)00021-2 [67] Ooi ET, Song C, Tin Loi F, et al. Polygon scaled boundary finite elements for crack propagation modelling. International journal for numerical methods in engineering, 2012, 91(3): 319-342 doi: 10.1002/nme.4284 [68] 刘彪, 王桥, 张宗亮等. 基于B-DEM的颗粒聚合体应力计算和破碎路径模拟. 岩土力学, 2022, 43(12): 3493-3502 (Liu Biao, Wang Qiao, Zhang Zongliang, et al. Calculation of stress field and particle breakage paths for granular system based on the combined boundary-discrete element method. Rock and Soil Mechanics, 2022, 43(12): 3493-3502 (in Chinese)(Liu Biao, Wang Qiao, Zhang Zongliang, et al. Calculation of stress field and particle breakage paths for granular system based on the combined boundary-discrete element method. Rock and Soil Mechanics, 2022, 43(12): 3493-3502(in Chinese)). [69] Munjiza A, Owen DRJ, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering Computations, 1995, 12(2): 145-174 doi: 10.1108/02644409510799532 [70] Munjiza A, Andrews KRF, White JK. Combined single and smeared crack model in combined finite‐discrete element analysis. International Journal for Numerical Methods in Engineering, 1999, 44: 41-57 doi: 10.1002/(SICI)1097-0207(19990110)44:1<41::AID-NME487>3.0.CO;2-A [71] Munjiza A, Andrews KRF. Penalty function method for combined finite–discrete element systems comprising large number of separate bodies. International Journal for Numerical Methods in Engineering, 2000, 49: 1377-1396 doi: 10.1002/1097-0207(20001220)49:11<1377::AID-NME6>3.0.CO;2-B [72] 严成增, 郑宏, 孙冠华等. 基于数字图像技术的岩土材料有限元−离散元分析. 岩土力学, 2014, 35(8): 7 (Yan Chengzeng, Zheng Hong, Sun Guanhua, et al. FDEM of geomaterials based on digital image technology. Rock and Soil Mechanics, 2014, 35(8): 7 (in Chinese)( Yan Chengzeng, Zheng Hong, Sun Guanghua, et al. FDEM of geomaterials based on digital image technology. Rock and Soil Mechanics, 2014, 35(8): 7 (in Chinese)). [73] Ma G, Zhou W, Regueiro RA, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technology, 2017, 308: 388-397 doi: 10.1016/j.powtec.2016.11.046 [74] Bagherzadeh-Khalkhali A, Mirghasemi AA, Mohammadi S. Micromechanics of breakage in sharp-edge particles using combined DEM and FEM. Particuology, 2008, 6(5): 347-361 doi: 10.1016/j.partic.2008.07.002 [75] Bagherzadeh-Khalkhali A, Mirghasemi AA, Mohammadi S. Numerical simulation of particle breakage of angular particles using combined DEM and FEM. Powder Technology, 2011, 205: 15-29 doi: 10.1016/j.powtec.2010.07.034 [76] Mahabadi O, Kaifosh P, Marschall P, et al. Three-dimensional FDEM numerical simulation of failure processes observed in opalinus clay laboratory samples. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 591-606 doi: 10.1016/j.jrmge.2014.10.005 [77] Rougier E, Munjiza A, Zhou L, et al. The combined plastic and discrete fracture deformation framework for FDEM. International Journal for Numerical Methods in Engineering, 2019, 121(5): 1020-1035 [78] Chen X, Chan AHC. Modelling impact fracture and fragmentation of laminated glass using the combined finite-discrete element method. International Journal of Impact Engineering, 2018, 112: 15-29 doi: 10.1016/j.ijimpeng.2017.10.007 [79] Lilja VP, Polojärvi A, Tuhkuri J, et al. Effective material properties of a finite element-discrete element model. Computers and Structures, 2019, 224: 106107 doi: 10.1016/j.compstruc.2019.106107 [80] Ayatollahi MR, Aliha MRM. On determination of mode II fracture toughness using semi-circular bend specimen. International Journal of Solids and Structures, 2006, 43(17): 5217-5227 [81] Kazerani T. Effect of micromechanical parameters of microstructure on compressive and tensile failure process of rock. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 44-55. [82] Vizini VOS, Futai MM. Mode II fracture toughness determination of rock and concrete via modified direct shear test. Engineering Fracture Mechanics, 2021, 257: 108007 [83] Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104 doi: 10.1016/0022-5096(60)90013-2 [84] Barenblatt GI. The mechanical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7: 55-129 [85] 孙家啟, 纪冬梅, 唐家志. 内聚力模型在裂纹萌生及扩展中的应用. 上海电力学院学报, 2016, 32(2): 129-135 (Sun Jiaqi, Ji Dongmei, Tang Jiazhi. Application of cohesive zone model on crack initiation and propagation. Journal of Shanghai University of Electric Power, 2016, 32(2): 129-135 (in Chinese)(Sun Jiaqi, Ji Dongmei, Tang Jiazhi. Application of Cohesive Zone Model on Crack Initiation and Propagation. Journal of Shanghai University of Electric Power, 2016, 32(2): 129-135(in Chinese)). [86] Hillerborg A, Modéer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773-781 doi: 10.1016/0008-8846(76)90007-7 [87] Needleman A. An analysis of tensile decohesion along an interface. Journal of the Mechanics and Physics of Solids, 1990, 38(3): 289-324 doi: 10.1016/0022-5096(90)90001-K [88] Kolhe R, Tang S, Hui CY, et al. Cohesive properties of nickel-alumina interfaces determined via simulation of ductile bridging experiments. International journal of solids and structures, 1999, 36(36): 5573-5595 doi: 10.1016/S0020-7683(98)00256-X [89] Liu GY, Xu WJ, Govender N, et al. Simulation of rock fracture process based on GPU-accelerated discrete element method. Powder Technology, 2021, 337(2): 640-656 [90] Gui Y, Bui HH, Kodikara J, et al. Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model. International Journal of Impact Engineering, 2016, 87: 146-155 doi: 10.1016/j.ijimpeng.2015.04.010 [91] 陈智勇, 苏国韶, 黄小华等. 近场动力学研究进展与岩石破裂过程模拟. 固体力学学报, 2019, 40(4): 354-371 (Chen Zhiyong, Su Guoshao, Huang Xiaohua, et al. Recent progress in peridynamics and its numerical simulation in rock fracture process. Chinese Journal of Solid Mechanics, 2019, 40(4): 354-371 (in Chinese)(Chen Zhiyong, Su Guoshao, Huang Xiaohua, et al. Recent progress in peridynamics and its numerical simulation in rock fracture process. Chinese Journal of Solid Mechanics, 2019, 40(4): 354-371(in Chinese)). [92] 章青, 顾鑫, 郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 2016, 48(1): 56-63 (Zhang Qing, Gu Xin, Yu Yangtian. Near field dynamic simulation of dynamic mechanical response of granular materials under impact load. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63 (in Chinese)(Zhang Qing, Gu Xin, Yu Yangtian. Near field dynamic simulation of dynamic mechanical response of granular materials under impact load. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63(in Chinese)). [93] Silling SA, Askari E. Peridynamic modeling of impact damage//ASME pressure vessels and piping conference, 2004: 197-205 [94] 申国哲, 王瑞阳, 夏阳等. 基于近场动力学的薄板弯曲大变形及断裂分析. 力学学报, 2023, 55(2): 381-389 (Shen Guozhe, Wang Ruiyang, Xia Yang, et al. Large deformation and fracture analysis of thin plate bending based on peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 381-389 (in Chinese)(Shen Guozhe, Wang Ruiyang, Xia Yang, et al. Large deformation and fracture analysis of thin plate bending based on peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 381-389(in Chinese)). [95] Zhu F, Zhao J. Interplays between particle shape and particle breakage in confined continuous crushing of granular media. Powder Technology, 2021, 378: 455-467 [96] Jiang H, He L, Fan L, et al. Numerical analysis method of cemented carbide turning tool’s micro breakage based on peridynamic theory. The International Journal of Advanced Manufacturing Technology, 2017, 88(5): 1619-1628 [97] Ebrahimi S, Steigmann D, Komvopoulos K. Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films. Journal of Mechanics of Materials and Structures, 2015, 10(5): 559-572 doi: 10.2140/jomms.2015.10.559 [98] Zhu F, Zhao J. Modeling continuous grain crushing in granular media: A hybrid peridynamics and physics engine approach. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 334-355 [99] Zhu F, Zhao J. A peridynamic investigation on crushing of sand particles. Géotechnique, 2019, 69(6): 526-540 [100] 朱竞高, 任晓丹. 近场动力学系统中波传播特性的探究. 力学学报, 2023, 55(1): 137-147 (Zhu Jinggao, Ren Xiaodan. Study of wave dispersion and propagation in peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 137-147 (in Chinese)(Zhu Jinggao, Ren Xiaodan. Study of wave dispersion and propagation in peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 137-147(in Chinese)). [101] Shen F, Zhang Q, Huang D. Damage and failure process of concrete structure under uniaxial compression based on peridynamics modeling. Mathematical Problems in Engineering, 2013, 2013: 631074 [102] Lee J, Liu W, Hong JW. Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. International Journal of Impact Engineering, 2016, 87: 108-119 doi: 10.1016/j.ijimpeng.2015.06.012 [103] Macek RW, Silling SA. Peridynamics via finite element analysis. Finite Elements in Analysis and Design, 2007, 43(15): 1169-1178 doi: 10.1016/j.finel.2007.08.012 [104] Gu X, Zhang Q, Huang D, et al. Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics, 2016, 160: 124-137 doi: 10.1016/j.engfracmech.2016.04.005 [105] Han F, Lubineau G, Azdoud Y, et al. A morphing approach to couple state-based peridynamics with classical continuum mechanics. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 336-358 doi: 10.1016/j.cma.2015.12.024 [106] Ren B, Fan H, Bergel GL, et al. A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Computational Mechanics, 2015, 55(2): 287-302 doi: 10.1007/s00466-014-1101-6 [107] Lai X, Ren B, Fan H, et al. Peridynamics simulations of geomaterial fragmentation by impulse loads. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(12): 1304-1330 doi: 10.1002/nag.2356 [108] Lundberg P, Renström R, Lundberg B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration. International Journal of Impact Engineering, 2000, 24(3): 259-275 doi: 10.1016/S0734-743X(99)00152-9 [109] Silling S A, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics, 2005, 40: 395-409 doi: 10.1016/j.ijnonlinmec.2004.08.004 [110] Hu W, Wang Y, Yu J, et al. Impact damage on a thin glass plate with a thin polycarbonate backing. International Journal of Impact Engineering, 2013, 62: 152-165 [111] Nadimi S, Miscovic I, Mclennan J. A 3 D peridynamic simulation of hydraulic fracture process in a heterogeneous medium. Journal of Petroleum Science and Engineering, 2016, 145: 444-452 [112] Ha Y D, Lee J, Hong JW. Fracturing patterns of rock-like materials in compression captured with peridynamics. Engineering Fracture Mechanics, 2015, 144: 176-193 [113] 朱其志, 倪涛, 赵伦洋等. 岩石类材料裂纹扩展贯通的近场动力学方法模拟. 岩石力学与工程学报, 2016, 35(A02): 3507-3515 (Zhu Qizhi, Ni Tao, Zhao Lunyang, et al. Simulations of crack propagation in rock-like materials using peridynamic method. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(A02): 3507-3515 (in Chinese)(Zhu Qizhi, Ni Tao, Zhao Lunyang, et al. Simulations of crack propagation in rock-like materials using peridynamic method. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(A02): 3507-3515(in Chinese)). [114] 王振宇, 程站起. 岩石材料动态破坏的近场动力学方法数值模拟. 力学季刊, 2019, 40(1): 22-31 (Wang Zhengyu, Cheng Qizhan. Numerical simulation of damage of rock materials based on peridynamics. Chinese Quarterly of Mechanics, 2019, 40(1): 22-31 (in Chinese)(Wang Zhengyu, Cheng Qizhan. Numerical simulation of damage of rock materials based on peridynamics. Chinese Quarterly Of Mechanics, 2019, 40(1): 22-31(in Chinese)). [115] Lee J, Ha YD, Hong JW. Crack coalescence morphology in rock-like material under compression. International Journal of Fracture, 2017, 203(1): 211-236 [116] Lee J, Oh SE, Hong JW. Parallel programming of a peridynamics code coupled with finite element method. International Journal of Fracture, 2018, 203(1): 99-114 [117] Rabczuk T, Ren H. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 2017, 225: 42-48 doi: 10.1016/j.enggeo.2017.05.001 [118] Zhou X, Wang Y, Qian Q. Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. European Journal of Mechanics-A/Solids, 2016, 60: 277-299 doi: 10.1016/j.euromechsol.2016.08.009 [119] Wang Y, Zhou X, Xu X. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 2016, 163: 248-273 doi: 10.1016/j.engfracmech.2016.06.013 [120] Zhou X, Wang Y. Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics. International Journal of Rock Mechanics and Mining Sciences, 2016, 89: 235-249 doi: 10.1016/j.ijrmms.2016.09.010 [121] Zhou X, Wang Y, Xu X. Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. International Journal of Fracture, 2016, 201(2): 213-234 doi: 10.1007/s10704-016-0126-6 [122] Ha Y D, Bobaru F. Characteristics of dynamic brittle fracture captured with peridynamics. Engineering Fracture Mechanics, 2011, 78(6): 1156-1168 doi: 10.1016/j.engfracmech.2010.11.020 [123] Harmon JM, Arthur D, Andrade JE. Level set splitting in DEM for modeling breakage mechanics. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 112961 doi: 10.1016/j.cma.2020.112961 [124] Wang Q, Feng YT, Zhou W, et al. A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 1-30 [125] Wang Q, Zhou W, Feng YT. The phase-field model with an auto-calibrated degradation function based on general softening laws for cohesive fracture. Applied Mathematical Modelling, 2020, 86: 185-206 [126] Yue Q, Zhou W, Wang Q, et al. An adaptive phase-field model based on bilinear elements for tensile-compressive-shear fracture. Computers & Mathematics with Applications, 2022, 105: 112-135 -