EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度敏感凝胶推进剂中气泡运动特性研究

宋春雨 李强 周昊 李梦哿 封锋 吴威涛

宋春雨, 李强, 周昊, 李梦哿, 封锋, 吴威涛. 温度敏感凝胶推进剂中气泡运动特性研究. 力学学报, 2023, 55(9): 1880-1891 doi: 10.6052/0459-1879-23-208
引用本文: 宋春雨, 李强, 周昊, 李梦哿, 封锋, 吴威涛. 温度敏感凝胶推进剂中气泡运动特性研究. 力学学报, 2023, 55(9): 1880-1891 doi: 10.6052/0459-1879-23-208
Song Chunyu, Li Qiang, Zhou Hao, Li Mengge, Feng Feng, Wu Weitao. Bubble dynamics in temperature sensitive non-Newtonian gel propellant. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1880-1891 doi: 10.6052/0459-1879-23-208
Citation: Song Chunyu, Li Qiang, Zhou Hao, Li Mengge, Feng Feng, Wu Weitao. Bubble dynamics in temperature sensitive non-Newtonian gel propellant. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1880-1891 doi: 10.6052/0459-1879-23-208

温度敏感凝胶推进剂中气泡运动特性研究

doi: 10.6052/0459-1879-23-208
基金项目: 江苏省自然科学基金(BK20201302)资助项目
详细信息
    通讯作者:

    吴威涛, 教授, 主要研究方向为流变学、传热学和流体力学. E-mail: weitaowwtw@njust.edu.cn

  • 中图分类号: O359

BUBBLE DYNAMICS IN TEMPERATURE SENSITIVE NON-NEWTONIAN GEL PROPELLANT

  • 摘要: 凝胶推进剂是一种具有剪切变稀特性的非牛顿流体, 其流变性质还会受到温度的影响. 在凝胶推进剂制造和装填过程中, 极易出现气体混入的情况, 这会直接影响发动机的工作性能. 为了探究气泡在凝胶推进剂中的运动特性, 文章采用流体体积法(VOF)模拟研究了静止凝胶中单气泡在浮力作用下的上升过程, 其中凝胶的黏性以改进的Carreau-Yasuda模型描述, 通过连续表面力(CSF)模型计算凝胶的表面张力. 通过改变凝胶中温度、流变指数、特征时间和表面张力等参数, 观察非牛顿流体中黏度和剪切速率的变化, 进而得到其对气泡的纵横比、重心位置和速度的影响. 并探讨了不同温度下, 流变指数与特征时间两种参数对气泡运动的影响. 研究结果表明, 凝胶的高黏性会阻碍气泡的运动并限制气泡的形变, 导致气泡的形变不显著; 温度的升高会降低凝胶的黏度, 从而显著影响气泡的运动轨迹和形态, 使得气泡上升速度增加并增加其变形; 流变指数和特征时间会通过改变液体性质进而对气泡的速度和纵横比产生影响; 此外, 表面张力的变化会对气泡底部的变形产生较大影响.

     

  • 图  1  示意图(非按比例)

    Figure  1.  Schematic (not to scale)

    图  2  不同温度下气泡的运动情况

    Figure  2.  The movement of bubbles at different temperatures

    图  3  不同温度下气泡周围的流线图

    Figure  3.  Streamline diagram around bubbles at different temperatures

    图  4  不同温度下气泡的速度与纵横比

    Figure  4.  Velocity and aspect ratio of bubbles at different temperatures

    图  5  不同温度下液体中的表观黏度(上)和剪切速率(下)

    Figure  5.  Apparent viscosity (top) and shear rate (bottom) in liquids at different temperatures

    图  6  不同流变指数下的表观黏度(左)和剪切速率(右)

    Figure  6.  Apparent viscosity (left) and shear rate (right) at different rheological indices

    图  7  流变指数对气泡底部的黏度及速度的影响

    Figure  7.  Effect of rheological index on viscosity and velocity at bubble bottom

    图  8  流变指数对气泡的纵横比及重心位置的影响

    Figure  8.  Effect of rheological index on the aspect ratio and the position of the center of gravity of bubbles

    图  9  流变指数及特征时间对气泡速度的影响

    Figure  9.  Influence of rheological index and characteristic time on bubble velocity

    图  10  不同λ下的气泡运动轨迹

    Figure  10.  Bubble trajectory under different λ

    图  11  3种温度下气泡的纵横比和速度随流变指数与特征时间的变化情况

    Figure  11.  Variations of aspect ratio and velocity of bubbles with rheological index and characteristic time at three temperatures

    图  12  不同Eo数下的流线图

    Figure  12.  Streamline diagrams under different Eo number

    图  13  不同Eo数下液体的表观黏度

    Figure  13.  Apparent viscosity of liquid at different Eo number

    图  14  不同Eo数下气泡的上升速度

    Figure  14.  Rising speed of bubbles at different Eo number

  • [1] 聂万胜, 何博, 苏凌宇等. 有机凝胶偏二甲肼液滴着火燃烧特性及影响因素实验研究. 实验流体力学, 2013, 27(4): 23-31 (Nie Wansheng, He Bo, Su Lingyu, et al. Experimental study on the characteristics and influence factors of organic gel UDMH droplet burning. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 23-31 (in Chinese) doi: 10.3969/j.issn.1672-9897.2013.04.005

    Nie Wansheng, He Bo, Su Lingyu, et al. Experimental study on the characteristics and influence factors of organic gel UDMH droplet burning. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 23-31(in Chinese)) doi: 10.3969/j.issn.1672-9897.2013.04.005
    [2] Bird RB, Armstrong RC, Hassager O. Dynamics of Polymeric Liquids. John Wiley & Sons, 1987: 3-633
    [3] Li MG, Cao QL, Chen X, et al. Numerical simulations of the flow of a kerosene gel: Effects of thixotropy and shear-thinning. International Journal of Non-Linear Mechanics, 2023, 153(6): 104421
    [4] Ciezki HK, Hürttlen J, Naumann KW, et al. Overview of the German gel propulsion technology program//The 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 2014: 3794
    [5] Rahimi S, Hasan D, Peretz A. Preparation and characterization of gel propellants and simulants//The 37th Joint Propulsion Conference and Exhibit, Salt Lake City, UT, USA, 2001: 3264
    [6] 俞肇铭. 气泡混入液体推进剂——推力振荡, 提前熄火. 推进技术, 1984, 1(1): 36-45

    Yu Zhaoming. Air bubbles mixed into liquid propellant-thrust oscillations, premature flameout. Journal of Propulsion Technology, 1984, 1(1): 36-45 (in Chinese)
    [7] Premlata AR, Tripathi MK, Karri B, et al. Numerical and experimental investigations of an air bubble rising in a Carreau-Yasuda shear-thinning liquid. Physics of Fluids, 2017, 29(3): 033103 doi: 10.1063/1.4979136
    [8] Davidson JF, Schüler BOG. Bubble formation at an orifice in a viscous liquid. Chemical Engineering Research and Design, 1997, 75(1): S105-S115
    [9] Zhang L, Yang C, Mao ZS. Numerical simulation of a bubble rising in shear-thinning fluids. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(11-12): 555-567 doi: 10.1016/j.jnnfm.2010.02.012
    [10] Pang M, Lu M. Numerical study on dynamics of single bubble rising in shear-thinning power-law fluid in different gravity environment. Vacuum, 2018, 153(7): 101-111
    [11] Abu-Nab AK, Selima ES, Morad AM. Theoretical investigation of a single vapor bubble during Al2O3/H2O nanofluids in power-law fluid affected by a variable surface tension. Physica Scripta, 2021, 96(3): 035222 doi: 10.1088/1402-4896/abdb5a
    [12] 胡波, 庞明军. 特征时间对剪切稀化流体气泡上浮特性的影响. 化工进展, 2021, 40(5): 2440-2451 (Hu Bo, Pang Mingjun. Effect of characteristic time on bubble uplift characteristics of shear thinning fluid. Chemical Progress, 2021, 40(5): 2440-2451 (in Chinese) doi: 10.16085/j.issn.1000-6613.2020-1206

    Hu Bo, Pang Mingjun. Effect of Characteristic Time on Bubble Uplift Characteristics of Shear Thinning Fluid. Chemical Progress, 2021, 40(05): 2440-2451(in Chinese)) doi: 10.16085/j.issn.1000-6613.2020-1206
    [13] Li SB, Zheng Y, Li KD, et al. Numerical simulation of single bubble rising in shear-thinning fluids by level set method. Journal of Central South University, 2016,23(4):1000-1006
    [14] 姜韶堃, 马友光, 陶志勇. 非牛顿流体中运动气泡的形变. 舰船科学技术, 2010, 32(12): 38-41 (Jiang Shaokun, Ma Youguang, Tao Zhiyong. Deformation of moving bubbles in non-newtonian fluids. Ship Science and Technology, 2010, 32(12): 38-41 (in Chinese)

    Jiang Shaokun , Ma Youguang , Tao Zhiyong . Deformation of Moving Bubbles in Non-Newtonian Fluids. Ship Science and Technology, 2010, 32(12): 38-41(in Chinese)
    [15] Fan W, Sun Y, Chen H. Bubble volume and aspect ratio generated in non-newtonian fluids. Chemical Engineering & Technology, 2014, 37(9): 1566-1574
    [16] Liu J, Zhu C, Fu T, et al. Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids. Chemical Engineering Science, 2013, 93(9): 55-66
    [17] Wang X, Klaasen B, Degrève J, et al. Experimental and numerical study of buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell. Physics of Fluids, 2014, 26(12): 123303 doi: 10.1063/1.4903488
    [18] Xiang X, Wang H, Shang Q, et al. Dynamics of bubble formation in yield stress fluids in parallelized microchannels. Chemical Engineering Science, 2023, 267(3): 118317
    [19] Aguirre VA, Castillo BA, Narvaez CP. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum//AIP Conference Proceedings, AIP Publishing LLC, 2017: 1872
    [20] Rahimi S, Peretz A, Natan B. Rheological matching of gel propellants. Journal of Propulsion and Power, 2010, 26(2): 376-379 doi: 10.2514/1.42904
    [21] Rahimi S, Natan B. Atomization characteristics of gel fuels//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 1998: 3830
    [22] Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Applied Mathematical Modelling, 2013, 37(3): 1451-1467 doi: 10.1016/j.apm.2012.04.004
    [23] Klostermann J, Schaake K, Schwarze R. Numerical simulation of a single rising bubble by VOF with surface compression. International Journal for Numerical Methods in Fluids, 2013, 71(8): 960-982 doi: 10.1002/fld.3692
    [24] Garoosi F, Merabtene T, Mahdi TF. Numerical simulation of merging of two rising bubbles with different densities and diameters using an enhanced volume-of-fluid (VOF) model. Ocean Engineering, 2022, 247(5): 110711
    [25] Reza AM, Salimi E, Adibi P. Numerical simulation and investigation of bubble velocity and deformation in inclined channel with two consecutive slopes using VOF-PLIC method. Modares Mechanical Engineering, 2015, 14(11): 29-36
    [26] Nahed J, Dgheim J. Estimation curvature in PLIC-VOF method for interface advection. Heat and Mass Transfer, 2020, 56(3): 773-787 doi: 10.1007/s00231-019-02737-4
    [27] 庞明军, 牛瑞鹏, 陆敏杰. 壁面效应对剪切稀化流体内气泡上浮特性的影响. 应用数学和力学, 2020, 41(2): 143-155 (Pang Mingjun, Niu Ruipeng, Lu Minjie. Wall effects on floating characteristics of bubbles in shear-thinning fluids. Applied Mathematics and Mechanics, 2020, 41(2): 143-155 (in Chinese)

    Pang Mingjun, Niu Ruipeng, Lu Minjie. Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids. Applied Mathematics and Mechanics, 2020, 41(02): 143-155 (in Chinese)
    [28] Zhou Y, Zhao C, Ji B, et al. Numerical simulation of bubbly flow using partially averaged navier-stokes simulation and a path oscillation model in the euler-lagrange approach. Industrial & Engineering Chemistry Research, 2021, 60(10): 4120-4130
    [29] Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
    [30] Annaland MVS, Deen NG, Kuipers JAM. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chemical Engineering Science, 2005, 60(11): 2999-3011 doi: 10.1016/j.ces.2005.01.031
    [31] Rott E, Leppin C, Diederichs T, et al. Protein-protein interactions in solutions of monoclonal antibodies probed by the dependence of the high-frequency viscosity on temperature and concentration. Analyst, 2023, 148(8): 1887-1897 doi: 10.1039/D3AN00076A
    [32] Cao QL, Wu WT, Liao WH, et al. Effects of temperature on the flow and heat transfer in gel fuels: A numerical study. Energies, 2020, 13(4): 821-838 doi: 10.3390/en13040821
    [33] Zhou H, Feng F, Cao QL, et al. Heat transfer and flow of a gel fuel in corrugated channels. Energies, 2022, 15(19): 7287-7306 doi: 10.3390/en15197287
    [34] Zhang X, Wang J, Wan D. An improved multi-scale two phase method for bubbly flows. International Journal of Multiphase Flow, 2020, 133(12): 103460
    [35] Raessi M, Mostaghimi J, Bussmann M. Advecting normal vectors: A new method for calculating interface normals and curvatures when modeling two-phase flows. Journal of Computational Physics, 2007, 226(1): 774-797 doi: 10.1016/j.jcp.2007.04.023
    [36] Dong P, Liu G, Liu F, et al. Effect of structure and operation parameters on heat and mass transfer coefficients of single-bubble absorption for lithium bromide solution. International Journal of Heat and Mass Transfer, 2023, 201(2): 123587
    [37] Ma Q, Zhou Y, Gu H, et al. Experimental research on aerosol deposition phenomenon in single-sized rising bubble. Progress in Nuclear Energy, 2022, 154(11): 104456
    [38] Ghazivini M, Hafez M, Ratanpara A, et al. A review on correlations of bubble growth mechanisms and bubble dynamics parameters in nucleate boiling. Journal of Thermal Analysis and Calorimetry, 2022, 147(11): 6035-6071 doi: 10.1007/s10973-021-10876-2
    [39] Abubakar HA, Matar OK. Linear stability analysis of Taylor bubble motion in downward flowing liquids in vertical tubes. Journal of Fluid Mechanics, 2022, 941(12): 1-39
    [40] Yang P, Wang X, Liu Y, et al. Numerical simulation of vapor configuration and bubbles coalescence in cryogenic propellant tank under microgravity. Microgravity Science and Technology, 2023, 35(2): 20-37 doi: 10.1007/s12217-023-10045-0
    [41] Raees F, Van der Heul DR, Vuik C. Evaluation of the interface-capturing algorithm of OpenFoam for the simulation of incompressible immiscible two-phase flow. Reports of the Department of Applied Mathematical Analysis, 2011, 11(7): 1-41
    [42] Zhang J, Zhao W, Liu H, et al. Numerical study of surfactant effects on the rise of a single bubble and two coaxial bubbles. International Communications in Heat and Mass Transfer, 2022, 137(8): 106284
    [43] Lü C, Chen X, Ji Z, et al. Simulation of bubble breaking process in a jet mixing reactor for desulfurization of molten iron. Journal of Iron and Steel Research International, 2023, 30(6): 1117-1127 doi: 10.1007/s42243-023-00984-8
    [44] Hu B, Pang M. Numerical study on the influence of liquid viscosity ratio on the hydrodynamics of a single bubble in shear-thinning liquid. Applied Mathematical Modelling, 2022, 103(3): 122-140
  • 加载中
图(14)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  122
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 录用日期:  2023-06-30
  • 网络出版日期:  2023-07-01
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回