EI、Scopus 收录
中文核心期刊
邢好运, 刘卓, 汪球, 赵伟, 高亮杰, 刘中臣, 钱战森. 高超声速火星进入环境中颗粒运动特性研究. 力学学报, 2023, 55(7): 1451-1462. DOI: 10.6052/0459-1879-23-192
引用本文: 邢好运, 刘卓, 汪球, 赵伟, 高亮杰, 刘中臣, 钱战森. 高超声速火星进入环境中颗粒运动特性研究. 力学学报, 2023, 55(7): 1451-1462. DOI: 10.6052/0459-1879-23-192
Xing Haoyun, Liu Zhuo, Wang Qiu, Zhao Wei, Gao Liangjie, Liu Zhongchen, Qian Zhansen. Research on particle motion characteristics under hypersonic mars entry environment. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1451-1462. DOI: 10.6052/0459-1879-23-192
Citation: Xing Haoyun, Liu Zhuo, Wang Qiu, Zhao Wei, Gao Liangjie, Liu Zhongchen, Qian Zhansen. Research on particle motion characteristics under hypersonic mars entry environment. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1451-1462. DOI: 10.6052/0459-1879-23-192

高超声速火星进入环境中颗粒运动特性研究

RESEARCH ON PARTICLE MOTION CHARACTERISTICS UNDER HYPERSONIC MARS ENTRY ENVIRONMENT

  • 摘要: 火星大气中会发生不同规模的沙尘暴, 大气中蕴含的尘埃颗粒会对高速进入的火星探测器表面造成侵蚀并导致壁面热流增加, 给探测器的热防护系统设计带来巨大挑战. 文章针对高超声速火星进入环境两相流动问题, 基于Euler-Lagrange框架建立非平衡流场与颗粒的单向耦合计算方法, 采用模态半径为0.35 μm的火星大气颗粒分布模型, 研究不同尺寸颗粒在流场中的运动轨迹, 获得高温相变模型对颗粒运动的影响以及不同粒径颗粒的撞击能量分布. 结果表明, 颗粒在高温流场中运动会吸热融化甚至蒸发, 高温相变模型导致的颗粒直径减小对小尺寸颗粒运动轨迹有较大影响; 当前计算状态下, 直径3 μm以上的颗粒具有较大的Stokes数且颗粒半径在运动过程中基本保持不变, 其运动轨迹受流场影响较小, 该尺寸颗粒的撞击分数均达95%以上, 是造成壁面撞击的主要颗粒尺寸; 撞击能量分数结果表明, 直径3 ~ 10 μm之间的颗粒是撞击能量的主要来源, 约占总撞击能量的80%.

     

    Abstract: Dust storms of varying degrees frequently transpire within the Martian atmosphere, and the dust particles present in the atmosphere will cause erosion on the surface of high-speed entering Mars vehicles, leading to increased wall heat flux. Consequently, the design of the vehicle's thermal protection system is confronted with a formidable challenge. In this paper, focusing on the two-phase flow problem in the hypersonic Mars entry environment, a non-equilibrium flow field and particle one-way coupling calculation method based on the Euler-Lagrange framework are established. Moreover, a Mars atmospheric particle distribution model with a modal radius of 0.35 μm is adopted to investigate the motion trajectories of particles with different sizes in the flow field. The effects of the high temperature phase change model on the particle motion and the impact energy distribution of particles with different particle sizes were obtained. The numerical simulation results show that particles are prone to melt or even vaporize during their moving in high-temperature flow fields, and it was confirmed that the high-temperature phase change model engenders a more pronounced effect on the trajectory of smaller particles due to their diminished dimensions. Conversely, particles with diameter above 3 μm exhibited a larger Stokes number, and their motion trajectory remained relatively unaffected by the surrounding flow field, and the radii of these particles remained relatively constant during motion. Particles with a diameter larger than 3 μm account for more than 95% of the impact fraction on the wall, which is the main source of wall impact. The results of the impact energy fraction indicate that particles with diameters between 3 and 10 μm are the main source of impact energy, accounting for approximately 80% of the total impact energy.

     

/

返回文章
返回