[1] |
Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50(1): 593-627 doi: 10.1146/annurev-fluid-122316-045217
|
[2] |
Lee JHS. The Detonation Phenomenon. Cambridge: Cambridge University Press, 2008
|
[3] |
Fickett W, Davis WC. Detonation: Theory and Experiment. New York: Dover Publications, 1979
|
[4] |
师迎晨, 张任帅, 计自飞等. 高速飞行器的连续旋转爆震推进技术. 空气动力学学报, 2022, 40(1): 101-113 (Shi Yingchen, Zhang Renshuai, Ji Zifei, et al. Rotating detonation propulsion technology for high-speed aircrafts. Acta Aerodynamica Sinica, 2022, 40(1): 101-113 (in Chinese) doi: 10.7638/kqdlxxb-2021.0231Shi Yingchen, Zhang Renshuai, Ji Zifei, et al. Rotating detonation propulsion technology for high-speed aircrafts. Acta Aerodynamica Sinica, 2022, 40(1): 101-113 (in Chinese) doi: 10.7638/kqdlxxb-2021.0231
|
[5] |
Menees GP, Adelman HG, Cambier JL, et al. Wave combustors for trans-atmospheric vehicles. Journal of Propulsion and Power, 1992, 8(3): 709-713 doi: 10.2514/3.23536
|
[6] |
Jiang Z, Zhang Z, Liu Y, et al. The criteria for hypersonic air-breathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 2021, 34(3): 94-104 doi: 10.1016/j.cja.2020.11.001
|
[7] |
Liu Y, Liu YS, Wu D, et al. Structure of an oblique detonation wave induced by a wedge. Shock Waves, 2016, 26(2): 161-168 doi: 10.1007/s00193-015-0600-5
|
[8] |
滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展. 力学进展, 2020, 50: 202002 (Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202002 (in Chinese) doi: 10.6052/1000-0992-19-011Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202002 (in Chinese) doi: 10.6052/1000-0992-19-011
|
[9] |
Guo H, Xu Y, Li S, et al. On the evolutions of induction zone structure in wedge-stabilized oblique detonation with water mist flows. Combustion and Flame, 2022, 241: 112122 doi: 10.1016/j.combustflame.2022.112122
|
[10] |
尚甲豪, 胡国暾, 汪球等. 高速弹丸诱导斜爆轰激波结构实验研究. 力学学报, 2023, 55(2): 309-317 (Shang Jiahao, Hu Guotun, Wang Qiu, et al. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309-317 (in Chinese) doi: 10.6052/0459-1879-22-536Shang Jiahao, Hu Guotun, Wang Qiu, et al. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309-317 (in Chinese) doi: 10.6052/0459-1879-22-536
|
[11] |
Figueria da Silva LF, Deshaies B. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study. Combustion and Flame, 2000, 121: 152-166 doi: 10.1016/S0010-2180(99)00141-8
|
[12] |
Li C, Kailasanath K, Oran ES. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6: 1600-1611 doi: 10.1063/1.868273
|
[13] |
Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713: 659-669 doi: 10.1017/jfm.2012.478
|
[14] |
Viguier C, Figueira da Silva LF, Desbordes D, et al. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixture. Proceedings of the Combustion Institute, 1996, 26: 3023-3031 doi: 10.1016/S0082-0784(96)80146-9
|
[15] |
Teng HH, Jiang ZL, Ng HD. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744: 111-128 doi: 10.1017/jfm.2014.78
|
[16] |
Yang P, Teng H, Ng HD, et al. A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proceedings of the Combustion Institute, 2019, 37: 3537-3544 doi: 10.1016/j.proci.2018.05.090
|
[17] |
Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 2007, 31: 2473-2480 doi: 10.1016/j.proci.2006.07.173
|
[18] |
Zhang Y, Gong J, Wang T. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology, 2016, 49: 130-134 doi: 10.1016/j.ast.2015.11.035
|
[19] |
滕宏辉, 牛淑贞, 杨鹏飞等. 非均匀来流中斜爆轰波对扰动的动态响应特性. 气体物理, 2023, 出版中Teng Honghui, Niu Shuzhen, Yang Pengfei, et al. Dynamic response characteristics of oblique detonation waves in non-uniform inflows. Physics of Gases, 2023, in press (in Chinese))
|
[20] |
Iwata K, Hanyu N, Maeda S, et al. Experimental visualization of sphere-induced oblique detonation in a non-uniform mixture. Combustion and Flame, 2022, 244: 112253 doi: 10.1016/j.combustflame.2022.112253
|
[21] |
Zhang Z, Wen C, Yuan C, et al. An experimental study of formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2022, 237: 111868 doi: 10.1016/j.combustflame.2021.111868
|
[22] |
Zhang Z, Liu Y, Wen C. Mechanisms of the destabilized Mach reflection of inviscid oblique detonation waves before an expansion corner. Journal of Fluid Mechanics, 2022, 940: A29 doi: 10.1017/jfm.2022.226
|
[23] |
Zhang Z, Wen C, Zhang W, et al. Formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2021, 223: 423-436 doi: 10.1016/j.combustflame.2020.09.034
|
[24] |
杨鹏飞, 张子健, 杨瑞鑫等. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 (Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206
|
[25] |
Anderson JD. Fundamentals of Aerodynamics. 6th edition. New York: McGraw-Hill, 2016
|
[26] |
史爱明, Dowell EH. 斜激波总压损失率极小值理论解与物理意义. 航空学报, 2018, 39(12): 122517 (Shi Aiming, Dowell EH. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122517 (in Chinese)Shi Aiming, Dowell, E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122517 (in Chinese)
|
[27] |
Pratt DT, Humphrey JW, Glenn DE. Morphology of standing oblique detonation waves. Journal of Propulsion and Power, 1991, 7(5): 837-845 doi: 10.2514/3.23399
|
[28] |
张镭潆, 归明月, 张雨桐等. 考虑平衡气体效应的斜爆轰波驻定窗口的研究. 弹道学报, 2021, 33(4): 40-44 (Zhang Leiying, Gui Mingyue, Zhang Yutong, et al. Analysis of standing window of oblique detonation wave considering equilibrium gas effect. Journal of Ballistics, 2021, 33(4): 40-44 (in Chinese) doi: 10.12115/j.issn.1004-499X(2021)04-007Zhang Leiying, Gui Mingyue, Zhang Yutong, et al. Analysis of standing window of oblique detonation wave considering equilibrium gas effect. Journal of Ballistics, 2021, 33(04): 40-44 (in Chinese) doi: 10.12115/j.issn.1004-499X(2021)04-007
|
[29] |
Dudebout R, Oppitz R, Sislian JP. Numerical simulation of hypersonic shock-induced combustion ramjets. Journal of Propulsion and Power, 1998, 14(6): 869-879 doi: 10.2514/2.5368
|
[30] |
Fusina G, Sislian JP, Parent B. Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA Journal, 2005, 43(7): 1591-1604 doi: 10.2514/1.9128
|
[31] |
Bhattrai S, Tang H. Formation of near-Chapman-Jouguet oblique detonation wave over a dual-angle ramp. Aerospace Science and Technology, 2017, 63: 1-8 doi: 10.1016/j.ast.2016.12.010
|
[32] |
Liu Y, Wu D, Yao S, et al. Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combustion Science and Technology, 2015, 187(4-6): 843-856
|