EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜爆轰波总压规律及其在爆轰发动机分析模型中的应用

黄恩 史爱明

黄恩, 史爱明. 斜爆轰波总压规律及其在爆轰发动机分析模型中的应用. 力学学报, 2023, 55(9): 1892-1899 doi: 10.6052/0459-1879-23-151
引用本文: 黄恩, 史爱明. 斜爆轰波总压规律及其在爆轰发动机分析模型中的应用. 力学学报, 2023, 55(9): 1892-1899 doi: 10.6052/0459-1879-23-151
Huang En, Shi Aiming. The law of total pressure of oblique detonation wave and its application in detonation engine analysis model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1892-1899 doi: 10.6052/0459-1879-23-151
Citation: Huang En, Shi Aiming. The law of total pressure of oblique detonation wave and its application in detonation engine analysis model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1892-1899 doi: 10.6052/0459-1879-23-151

斜爆轰波总压规律及其在爆轰发动机分析模型中的应用

doi: 10.6052/0459-1879-23-151
基金项目: 中央高校基本科研业务费专项资金资助项目(D5000220189)
详细信息
    通讯作者:

    史爱明, 副教授, 主要研究方向为激波气动力学、超音速飞机、光压推进和耦合力学. E-mail: sam@nwpu.edu.cn

  • 中图分类号: V211.1, O381

THE LAW OF TOTAL PRESSURE OF OBLIQUE DETONATION WAVE AND ITS APPLICATION IN DETONATION ENGINE ANALYSIS MODEL

Funds: The project was supported by the (12345678)and (9876543)
  • 摘要: 爆轰推进系统具有热循环效率高和燃烧速率快等优点, 逐渐展露出将取代传统动力技术的趋势, 在高超声速飞行器推进领域中具有广阔应用前景. 对推进系统而言, 气流总压损失需要尽可能小, 从全解域出发研究斜爆轰波总压特性有利于在爆轰推进系统的概念设计阶段控制总压损失量值. 文章关注于已经形成稳定的斜爆轰波面, 将斜爆轰波视为有瞬时能量添加的斜激波, 利用极曲线方法研究斜爆轰波总压损失问题. 以波前法向马赫数作为爆轰波强度表征量, 推导出斜爆轰波强度关系式, 发现绝热斜激波强度最弱关系式同样适用于斜爆轰波. 借用激波图解法, 证明了斜爆轰波最小总压损失特性仍然存在, 并进一步揭示了最小总压损失线会随着添加能量的增大而向更大的爆轰角偏移, 而原本对称的总压损失规律被打破. 此外, 还获得了增加能量大小和诱导爆轰楔面角度对最小总压损失的影响规律, 发现当获得的能量越多而楔面角度越小时斜爆轰波总压损失极值点越容易向更大的爆轰角偏移. 最后, 根据斜爆轰波总压特性, 提出了一种可提高发动机总压理论上限的简化设计思路, 斜爆轰波总压规律可为斜爆轰发动机的概念设计提供参考.

     

  • 图  1  斜爆轰波与斜激波极曲线之间的差异

    Figure  1.  The difference between the polars of oblique detonation wave and oblique shock

    图  2  一组斜爆轰波极曲线(Q = 10)

    Figure  2.  A set of oblique detonation wave polars (Q = 10)

    图  3  不同Q值下的CJ曲线

    Figure  3.  CJ curves with different Q values

    图  4  极曲线图谱上的斜爆轰波强度规律(Q = 10)

    Figure  4.  The law for oblique detonation wave intensity on the polar curves (Q = 10)

    图  5  总压损失极小值线(红色实线: Q = 2的斜爆轰波; 绿色实线: 斜激波)

    Figure  5.  The curve of minimum total pressure loss for oblique detonation wave (Q = 2, solid red line) and oblique shock wave (solid green line)

    图  6  不同Q值下总压损失与激波角的关系(20°楔面角)

    Figure  6.  The relation between total pressure loss and shock angle at different Q values (when the wedge angle is 20°)

    图  7  不同Q值下的最小总压损失和最弱爆轰波强度(20°楔面角)

    Figure  7.  The minimum total pressure loss and the weakest detonation wave strength at different Q values (when the wedge angle is 20°)

    图  8  斜爆轰发动机工况设计的最优马赫数选取过程

    Figure  8.  The operating process of selecting an optimum Mach number for oblique detonation engine design

  • [1] Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50(1): 593-627 doi: 10.1146/annurev-fluid-122316-045217
    [2] Lee JHS. The Detonation Phenomenon. Cambridge: Cambridge University Press, 2008
    [3] Fickett W, Davis WC. Detonation: Theory and Experiment. New York: Dover Publications, 1979
    [4] 师迎晨, 张任帅, 计自飞等. 高速飞行器的连续旋转爆震推进技术. 空气动力学学报, 2022, 40(1): 101-113 (Shi Yingchen, Zhang Renshuai, Ji Zifei, et al. Rotating detonation propulsion technology for high-speed aircrafts. Acta Aerodynamica Sinica, 2022, 40(1): 101-113 (in Chinese) doi: 10.7638/kqdlxxb-2021.0231

    Shi Yingchen, Zhang Renshuai, Ji Zifei, et al. Rotating detonation propulsion technology for high-speed aircrafts. Acta Aerodynamica Sinica, 2022, 40(1): 101-113 (in Chinese) doi: 10.7638/kqdlxxb-2021.0231
    [5] Menees GP, Adelman HG, Cambier JL, et al. Wave combustors for trans-atmospheric vehicles. Journal of Propulsion and Power, 1992, 8(3): 709-713 doi: 10.2514/3.23536
    [6] Jiang Z, Zhang Z, Liu Y, et al. The criteria for hypersonic air-breathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 2021, 34(3): 94-104 doi: 10.1016/j.cja.2020.11.001
    [7] Liu Y, Liu YS, Wu D, et al. Structure of an oblique detonation wave induced by a wedge. Shock Waves, 2016, 26(2): 161-168 doi: 10.1007/s00193-015-0600-5
    [8] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展. 力学进展, 2020, 50: 202002 (Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202002 (in Chinese) doi: 10.6052/1000-0992-19-011

    Teng Honghui, Jiang Zonglin. Progress in multi-wave structure and stability of oblique detonations. Advances in Mechanics, 2020, 50: 202002 (in Chinese) doi: 10.6052/1000-0992-19-011
    [9] Guo H, Xu Y, Li S, et al. On the evolutions of induction zone structure in wedge-stabilized oblique detonation with water mist flows. Combustion and Flame, 2022, 241: 112122 doi: 10.1016/j.combustflame.2022.112122
    [10] 尚甲豪, 胡国暾, 汪球等. 高速弹丸诱导斜爆轰激波结构实验研究. 力学学报, 2023, 55(2): 309-317 (Shang Jiahao, Hu Guotun, Wang Qiu, et al. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309-317 (in Chinese) doi: 10.6052/0459-1879-22-536

    Shang Jiahao, Hu Guotun, Wang Qiu, et al. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309-317 (in Chinese) doi: 10.6052/0459-1879-22-536
    [11] Figueria da Silva LF, Deshaies B. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study. Combustion and Flame, 2000, 121: 152-166 doi: 10.1016/S0010-2180(99)00141-8
    [12] Li C, Kailasanath K, Oran ES. Detonation structures behind oblique shocks. Physics of Fluids, 1994, 6: 1600-1611 doi: 10.1063/1.868273
    [13] Teng HH, Jiang ZL. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 2012, 713: 659-669 doi: 10.1017/jfm.2012.478
    [14] Viguier C, Figueira da Silva LF, Desbordes D, et al. Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixture. Proceedings of the Combustion Institute, 1996, 26: 3023-3031 doi: 10.1016/S0082-0784(96)80146-9
    [15] Teng HH, Jiang ZL, Ng HD. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 2014, 744: 111-128 doi: 10.1017/jfm.2014.78
    [16] Yang P, Teng H, Ng HD, et al. A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proceedings of the Combustion Institute, 2019, 37: 3537-3544 doi: 10.1016/j.proci.2018.05.090
    [17] Choi JY, Kim DW, Jeung IS, et al. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 2007, 31: 2473-2480 doi: 10.1016/j.proci.2006.07.173
    [18] Zhang Y, Gong J, Wang T. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology, 2016, 49: 130-134 doi: 10.1016/j.ast.2015.11.035
    [19] 滕宏辉, 牛淑贞, 杨鹏飞等. 非均匀来流中斜爆轰波对扰动的动态响应特性. 气体物理, 2023, 出版中

    Teng Honghui, Niu Shuzhen, Yang Pengfei, et al. Dynamic response characteristics of oblique detonation waves in non-uniform inflows. Physics of Gases, 2023, in press (in Chinese))
    [20] Iwata K, Hanyu N, Maeda S, et al. Experimental visualization of sphere-induced oblique detonation in a non-uniform mixture. Combustion and Flame, 2022, 244: 112253 doi: 10.1016/j.combustflame.2022.112253
    [21] Zhang Z, Wen C, Yuan C, et al. An experimental study of formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2022, 237: 111868 doi: 10.1016/j.combustflame.2021.111868
    [22] Zhang Z, Liu Y, Wen C. Mechanisms of the destabilized Mach reflection of inviscid oblique detonation waves before an expansion corner. Journal of Fluid Mechanics, 2022, 940: A29 doi: 10.1017/jfm.2022.226
    [23] Zhang Z, Wen C, Zhang W, et al. Formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2021, 223: 423-436 doi: 10.1016/j.combustflame.2020.09.034
    [24] 杨鹏飞, 张子健, 杨瑞鑫等. 斜爆轰发动机的推力性能理论分析. 力学学报, 2021, 53(10): 2853-2864 (Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206

    Yang Pengfei, Zhang Zijian, Yang Ruixin, et al. Theorical study on propulsive performance of oblique detonation engine. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese) doi: 10.6052/0459-1879-21-206
    [25] Anderson JD. Fundamentals of Aerodynamics. 6th edition. New York: McGraw-Hill, 2016
    [26] 史爱明, Dowell EH. 斜激波总压损失率极小值理论解与物理意义. 航空学报, 2018, 39(12): 122517 (Shi Aiming, Dowell EH. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122517 (in Chinese)

    Shi Aiming, Dowell, E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122517 (in Chinese)
    [27] Pratt DT, Humphrey JW, Glenn DE. Morphology of standing oblique detonation waves. Journal of Propulsion and Power, 1991, 7(5): 837-845 doi: 10.2514/3.23399
    [28] 张镭潆, 归明月, 张雨桐等. 考虑平衡气体效应的斜爆轰波驻定窗口的研究. 弹道学报, 2021, 33(4): 40-44 (Zhang Leiying, Gui Mingyue, Zhang Yutong, et al. Analysis of standing window of oblique detonation wave considering equilibrium gas effect. Journal of Ballistics, 2021, 33(4): 40-44 (in Chinese) doi: 10.12115/j.issn.1004-499X(2021)04-007

    Zhang Leiying, Gui Mingyue, Zhang Yutong, et al. Analysis of standing window of oblique detonation wave considering equilibrium gas effect. Journal of Ballistics, 2021, 33(04): 40-44 (in Chinese) doi: 10.12115/j.issn.1004-499X(2021)04-007
    [29] Dudebout R, Oppitz R, Sislian JP. Numerical simulation of hypersonic shock-induced combustion ramjets. Journal of Propulsion and Power, 1998, 14(6): 869-879 doi: 10.2514/2.5368
    [30] Fusina G, Sislian JP, Parent B. Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA Journal, 2005, 43(7): 1591-1604 doi: 10.2514/1.9128
    [31] Bhattrai S, Tang H. Formation of near-Chapman-Jouguet oblique detonation wave over a dual-angle ramp. Aerospace Science and Technology, 2017, 63: 1-8 doi: 10.1016/j.ast.2016.12.010
    [32] Liu Y, Wu D, Yao S, et al. Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combustion Science and Technology, 2015, 187(4-6): 843-856
  • 加载中
图(8)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  55
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 录用日期:  2023-07-04
  • 网络出版日期:  2023-07-05
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回