EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可变马赫数锥形流场的定平面形状乘波体设计方法研究

孟旭飞 白鹏 刘传振

孟旭飞, 白鹏, 刘传振. 基于可变马赫数锥形流场的定平面形状乘波体设计方法研究. 力学学报, 2023, 55(9): 1809-1819 doi: 10.6052/0459-1879-23-123
引用本文: 孟旭飞, 白鹏, 刘传振. 基于可变马赫数锥形流场的定平面形状乘波体设计方法研究. 力学学报, 2023, 55(9): 1809-1819 doi: 10.6052/0459-1879-23-123
Meng Xufei, Bai Peng, Liu Chuanzhen. Research on design method of planform-customized waverider from variable Mach number conical flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1809-1819 doi: 10.6052/0459-1879-23-123
Citation: Meng Xufei, Bai Peng, Liu Chuanzhen. Research on design method of planform-customized waverider from variable Mach number conical flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1809-1819 doi: 10.6052/0459-1879-23-123

基于可变马赫数锥形流场的定平面形状乘波体设计方法研究

doi: 10.6052/0459-1879-23-123
基金项目: 国家自然科学基金资助项目(U22B20133和12272366)
详细信息
    通讯作者:

    刘传振, 博士, 主要研究方向为飞行器布局设计与优化. E-mail: chuanzhenliu@126.com

  • 中图分类号: V221.5

RESEARCH ON DESIGN METHOD OF PLANFORM-CUSTOMIZED WAVERIDER FROM VARIABLE MACH NUMBER CONICAL FLOW

  • 摘要: 传统乘波体设计方法设计状态单一, 乘波体偏离设计点状态时高升阻比性能优势难以保持, 限制了乘波体在宽速域气动布局设计中的应用. 文章从密切锥乘波体理论出发, 通过在不同密切面内布置不同马赫数的锥形流场, 提出基于可变马赫数流场的定平面形状乘波体设计方法, 根据给定前缘型线生成不同展向马赫数分布的基准外形. 使用计算流体力学技术分析流场激波结构以及升阻力性能和纵向稳定性, 并与传统使用固定马赫数锥形流场的乘波体外形作比较, 探索这种定平面形状乘波体在高超声速范围内的宽速域特性. 结果表明, 基于可变马赫数流场的定平面形状乘波体设计是可行的, 可以有效扩大设计空间; 在高超声速阶段的宽速域范围内, 可变马赫数乘波体具有均衡的升阻比和容积率; 但可变马赫数基准流场对纵向稳定性的影响很小. 比较等容积、同样平面形状的固定马赫数乘波体, 发现在高超声速阶段, 可变马赫数乘波体的宽速域升阻性能没有明显优势.

     

  • 图  1  密切锥设计方法示意图

    Figure  1.  Illustrations of osculating-cone method

    图  2  基于不同马赫数分布流场的上反翼双后掠乘波体

    Figure  2.  Double swept waveriders with wing dihedral based on different Mach number distributions

    图  3  计算网格

    Figure  3.  Computational mesh

    图  4  升阻力随马赫数的变化 (α = 0°)

    Figure  4.  Lift-drag characteristics variation via Mach number at α = 0°

    4  升阻力随马赫数的变化 (α = 0°) (续)

    4.  Lift-drag characteristics variation via Mach number at α = 0° (continued)

    图  5  升阻力随马赫数的变化 (α = 2°)

    Figure  5.  Lift-drag characteristics variation via Mach number at α = 2°

    图  6  气动焦点随攻角的变化

    Figure  6.  Aerodynamic centers variation via angle of attack

    图  7  容积率随马赫数的变化

    Figure  7.  Variety of volume efficiency via Mach number

    图  8  与等容积乘波体的对比

    Figure  8.  Comparison with equal-volume waveriders

    图  9  Ma5.5与Ma5-10乘波体后缘压力分布(α = 0°)

    Figure  9.  Pressure distributions in trailing-edge sections of Ma5.5 and Ma5-10 waveriders (α = 0°)

    图  10  Ma9.25与Ma10-5乘波体后缘压力分布(α = 0°)

    Figure  10.  Pressure distributions in trailing-edge sections of Ma9.25 and Ma10-5 waveriders (α = 0°)

    表  1  可变马赫数外形的设计参数

    Table  1.   Design parameters of waveriders from variable-Mach-number flows

    ModelMainMaoutτ
    Ma5550.1414
    Ma5-105100.1612
    Ma7.57.57.50.2019
    Ma10-51050.2175
    Ma1010100.2218
    下载: 导出CSV

    表  2  不同网格的升阻特性结果

    Table  2.   Lift and drag results of different grid

    GridCLCDL/D
    coarse0.26540.10352.5627
    medium0.27000.10752.5118
    refined0.27230.10782.5257
    Grid$\Delta C_{\rm{L}}$$\Delta C_{\rm{D}}$
    coarse−2.53%−3.94%
    medium−0.83%−0.28%
    refined
    下载: 导出CSV

    表  3  不同网格的力矩结果

    Table  3.   Moments results of different grid

    GridCACNCMZ
    coarse0.046110.281090.19233
    medium0.049010.286440.19532
    refined0.048830.288710.19649
    Grid$\Delta C_{\rm{A} } $$\Delta C_{\rm{N} } $$\Delta C_{ {\rm{MZ} }}$
    coarse−5.57%−2.64%−2.12%
    medium0.35%−0.79%−0.60%
    refined
    下载: 导出CSV

    表  4  等容积乘波体的升阻比比较 (α = 0°)

    Table  4.   Comparisons of L/D with equal-volume waveriders (α = 0°)

    With base drag
    MaMa5-10Ma5.50$\varDelta $
    53.014 83.038 0−0.76%
    7.53.392 73.397 7−0.15%
    103.628 93.636 9−0.22%
    MaMa10-5Ma9.25$\varDelta $
    52.648 52.652 4−0.14%
    7.52.932 62.944 9−0.42%
    103.089 53.103 8−0.46%
    Without base drag
    MaMa5-10Ma5.50$\varDelta $
    54.261 74.422 9−3.64%
    7.54.145 14.226 9−1.93%
    104.125 44.185 2−1.43%
    MaMa10-5Ma9.25$\varDelta $
    53.588 03.569 70.51%
    7.53.462 43.465 5−0.09%
    103.422 83.432 2−0.27%
    下载: 导出CSV

    表  5  与等容积乘波体的升阻比比较 (α = 2°)

    Table  5.   Comparisons of L/D with equal-volume waveriders (α = 2°)

    With base drag
    MaMa5-10Ma5.50$\varDelta $
    53.33943.4685−3.72%
    7.53.59063.7025−3.02%
    103.71843.8242−2.77%
    MaMa10-5Ma9.25$\varDelta $
    52.80222.78040.78%
    7.52.98632.97220.47%
    103.07063.05930.37%
    Without base drag
    MaMa5-10Ma5.50$\varDelta $
    54.30674.5628−5.61%
    7.54.13694.3173−4.18%
    104.06234.2107−3.52%
    MaMa10-5Ma9.25$\varDelta $
    53.543 13.497 91.29%
    7.53.381 53.357 20.72%
    103.311 23.294 30.51%
    下载: 导出CSV

    表  6  Ma5-10与Ma5.50外形气动焦点位置的相对偏差

    Table  6.   Relative differences of A.C location between Ma5-10 and Ma5.50 configurations

    α/(°)Ma
    57.510
    −20.966 9%1.316 6%1.601 5%
    00.978 9%1.318 4%1.549 5%
    20.976 1%1.314 5%1.502 2%
    40.899 2%1.248 7%1.328 0%
    60.752 1%1.109 5%1.199 6%
    80.565 3%0.890 8%1.038 1%
    100.343 4%0.688 4%0.806 4%
    120.113 6%0.451 0%0.579 1%
    14−0.168 5%0.232 2%0.354 3%
    16−0.239 0%0.036 5%0.085 5%
    18−0.099 4%−0.224 6%−0.023 0%
    200.024 6%−0.312 4%−0.237 5%
    下载: 导出CSV

    表  7  Ma10-5与Ma9.25外形气动焦点位置的相对偏差

    Table  7.   Relative differences of A.C location between Ma10-5 and Ma9.25 configurations

    α/(°)Ma
    57.510
    −2−0.534 2%−0.711 4%−0.768 0%
    0−0.509 2%−0.703 3%−0.783 6%
    2−0.500 0%−0.636 1%−0.695 4%
    4−0.435 2%−0.587 3%−0.615 9%
    6−0.359 1%−0.514 3%−0.572 8%
    8−0.267 6%−0.428 7%−0.475 5%
    10−0.143 7%−0.336 4%−0.390 2%
    120.025 8%−0.216 2%−0.305 0%
    140.015 1%−0.117 2%−0.176 8%
    160.003 3%0.080 3%0.045 0%
    18−0.032 8%0.082 4%0.153 0%
    20−0.020 1%0.034 3%−0.042 3%
    下载: 导出CSV
  • [1] Zhao ZT, Huang W, Yan L, et al. An overview of research on wide-speed range waverider configuration. Progress in Aerospace Sciences. Progress in Aerospace Sciences, 2020, 113: 100606 doi: 10.1016/j.paerosci.2020.100606
    [2] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究. 中国科学E辑: 技术科学, 2009, 39(11): 1828-1835

    Wang Famin, Ding Haihe, Lei Maifang. Aerodynamic characteristics research on wide-speed range waverider configuration. Sci. China Ser. E-Tech. Sci., 2009, 52(10): 2903-2910 (in Chinese)
    [3] Li SB, Huang W, Wang ZG. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range. Sci. China Inf. Sci., 2014, 57(12): 128-201
    [4] Liu Z, Liu J, Ding F. Novel methodology for wide-ranged multistage morphing waverider based on conical theory. Acta Astronautica, 2017, 140: 362-369
    [5] Phoenix AA, Rogers RE, Maxwell JR, et al. Mach five to ten morphing waverider: control point study. Journal of Aircraft, 2019, 56(2): 493-504
    [6] 李珺, 易怀喜, 王逗等. 基于投影法的双后掠乘波体气动性能研究. 航空学报, 2021, 42(9): 124703 (Li Jun, Yi Huaixi, Wang Dou, et al. Research on aerodynamic performance of double swept waverider based on projection method. Acta Aero-Nautica Et Astronautica Sinica, 2021, 42(9): 124703 (in Chinese)

    Li Jun, Yi Huai-Xi, Wang Dou, et al. Research on Aerodynamic Performance of Double Swept Waverider Based on Projection Method [J]. Acta Aero-Nautica Et Astronautica Sinica, 2021, 42(9): 12473(in Chinese)
    [7] Rodi EP. Geometrical relations for osculating cones and osculating flowfield waveriders//The 49th Aerospace Science Meeting, Orlando, Florida, January 4-7, 2011. AIAA 2011-1188
    [8] Sobieczky H, Dougherty FC, Jones K. Hypersonic waverider design from given shock wave//The First International Waverider Symposium. Maryland: University of Maryland, 1990
    [9] Liu CZ, Bai P. Mathematical expression of geometric relationship in osculating cone waverider design. Journal of Aircraft, 2021, 58(4): 858-866 doi: 10.2514/1.C036122
    [10] Liu CZ, Bai P, Zhou WJ, et al. The double swept waverider from osculating-cone method. Journal of Aerospace Engineering, 2018, 31(6): 212-230
    [11] Liu CZ, Liu Q, Bai P, et al. Planform-customized waverider design integrating with vortex effect. Aerospace Science and Technology, 2019, 53(3): 438-443
    [12] Wang JF, Liu CZ, Bai P, et al. Design methodology of the waverider with controllable planar shape. Acta Astronautica, 2018, 151: 504-510 doi: 10.1016/j.actaastro.2018.06.048
    [13] 罗世彬, 周嘉明. 宽速域乘波构型设计方法研究综述. 宇航总体技术, 2021, 5(2): 68-74 (Luo Shibin, Zhou Jiaming. Review on the design methodology of waverider for a wide-speed range. Astronautical Systems Engineering Technology, 2021, 5(2): 68-74 (in Chinese)

    Luo S B, Zhou J M. Review on the design methodology of waverider for a wide-speed range. Astronautical Systems Engineering Technology, 2021, 5(2): 68-74(in Chinese))
    [14] Liu Z, Liu J, Ding F, et al. Novel osculating flowfield methodology for hypersonic waverider vehicles based on variable shock angle. Journal of Aerospace Engineering, 2018, 31(4): 04018043 doi: 10.1061/(ASCE)AS.1943-5525.0000864
    [15] Zhao ZT, Huang W, Li SB. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory. Acta Astronautica, 2018, 147: 163-174
    [16] Liu J, Liu Z, Wen X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number. Acta Astronautica, 2019, 162: 160-167
    [17] 孟旭飞, 白鹏, 李盾等. 上/下反翼对双后掠乘波体高超特性的影响. 航空学报, 2022, 43(2): 124988 (Meng Xufei, Bai Peng, Li Dun, et al. Effect of dihedral wing on hypersonic stability performance of double swept waverider. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124988 (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202021

    Meng X F, Bai P, LI D, et al. Effect of Dihedral Wing on Hypersonic Stability Performance of Double Swept Waverider[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124988 (in Chinese)) doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202021
    [18] Zhang TT, Wang ZG, Huang W, et al. A design approach of wide-speed-range vehicles based on the cone-derived theory. Aerospace Science and Technology, 2017, 71: 42-51 doi: 10.1016/j.ast.2017.09.010
    [19] Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 1981, 43: 357-372
    [20] Venkata KV. On the accuracy of limiters and convergence to steady state solutions. AIAA Paper 93-0880, 1993
    [21] Kermani MJ, Plett EG. Modified entropy correction formula for the roe scheme. AIAA Paper 2001-0083, 2001
    [22] Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
    [23] Wang ZJ, Chen RF. Fast, block lower-upper symmetric gauss-seidel scheme for arbitrary grids. AIAA Journal, 2000, 38(12): 2238-2245 doi: 10.2514/2.914
    [24] 刘周, 杨云军, 周伟江等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究. 航空学报, 2014, 35(2): 372-380 (Liu Zhou, Yang Yunjun, Zhou Weijiang, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380 (in Chinese)

    Liu Zhou, Yang Yun-Jun, Zhou Wei-Jiang, et al. Study Of Unsteady Separation Flow Around Airfoil at High Angle of Attack Using Hybrid RANS-LES Method [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380(in Chinese))
    [25] 龚安龙, 刘周, 杨云军等. 高超声速激波/边界层干扰流动数值模拟研究. 空气动力学学报, 2014, 32(6): 767-771 (Gong Anlong, Liu Zhou, Yang Yunjun, et al. Numerical study on hypersonic doublecone separated flow. Acta Aerodynamica Sinica, 2014, 32(6): 767-771 (in Chinese)

    Gong An-Long, Liu Zhou, Yang Yun-Jun, et al. Numerical Study on Hypersonic Doublecone Separated Flow [J]. Acta Aerodynamica Sinica, 2014, 32(6): 767-771(in Chinese))
    [26] 陈冰雁, 徐国武, 刘周等. 真实气体效应试飞器气动布局研究. 力学季刊, 2015, 36(2): 239-248 (Chen Bingyan, Xu Guowu, Liu Zhou, et al. Aerodynamic configu-ration of real gas effect demonstration vehicle. Chinese Quarterly of Mechanics, 2015, 36(2): 239-248 (in Chinese)

    Chen Bing-Yan, Xu Guo-Wu, Liu Zhou, et al. Aerodynamic Configu-Ration of Real Gas Effect Demonstration Vehicle [J]. Ch-Nese Quarterly Of Me-Chanics, 2015, 36(2): 239-248(in Chinese))
    [27] 赵弘睿, 龚安龙, 刘周等. 高空侧向喷流干扰效应数值研究. 空气动力学学报, 2020, 38(5): 996-1003 (Zhao Hongrui, Gong Anlong, Liu Zhou, et al. Numerical study of lateral jet intereaction at high altitude. Acta Aerody-Namica Sinica, 2020, 38(5): 996-1003 (in Chinese) doi: 10.7638/kqdlxxb-2020.0017

    Zhao Hong-Rui, Gong An-Long, Liu Zhou, et al. Numerical Study Of Lateral Jet Intereaction at High Altitude [J]. Acta Aerody-Namica Sinica, 2020, 38(5): 996-1003(in Chinese)) doi: 10.7638/kqdlxxb-2020.0017
    [28] Li SB, Wang ZG, Huang W, et al. Design and investigation on variable Mach number waverider for a wide-speed range. Aerospace Science and Technology, 2018, 76: 291-302 doi: 10.1016/j.ast.2018.01.044
    [29] Li SB, Li LQ, Huang W, et al. Design and investigation of equal cone-variable Mach number waverider in hypersonic flow. Science China Information Sciences, 2020, 96: 105540
    [30] Zhang TT, Wang ZG, Huang W, et al. Performance comparison between waverider and wide-speed-range gliding vehicle based on CFD approaches. Science China Technological Sciences, 2019, 62: 1861-1870 doi: 10.1007/s11431-018-9378-3
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  70
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 录用日期:  2023-07-11
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回