DSMC STUDY OF MICRO-ABLATION FOR REENTRY VEHICLES
-
摘要: 高超声速再入飞行器面临着严峻的气动热环境, 准确预测微烧蚀过程对热防护系统的设计至关重要. 由于烧蚀会改变气动外形, 进而影响周围的气动热环境以及烧蚀过程本身, 因此需要将烧蚀过程与流场变化进行耦合计算. 文章采用基于直接模拟蒙特卡洛(DSMC)方法的开源程序SPARTA, 对高超声速条件下的再入飞行器表面微烧蚀问题展开研究. 为构建并测试通用的耦合算法, 通过典型的一维烧蚀模型改进了SPARTA的动能烧蚀模型并采用烧蚀表面热平衡模型计算烧蚀速率, 结合Marching Square算法的特点修改了网格节点的计算方法. 针对柱体、球锥以及带有微小粗糙元的斜楔体等典型外形, 文中计算了二维条件下不同气动外形的烧蚀过程并进行了详细分析. 其中球锥截面烧蚀预测结果中沿驻点线的烧蚀面呈现出较快的衰退速率, 并且与文献中驻点附近的结果吻合情况较好. 斜楔体的烧蚀结果表明, 微小粗糙元的附近存在着非常稀薄的流场区域, 并且其与头部驻点区域会率先发生烧蚀, 反映了再入飞行器表面的微烧蚀特征. 烧蚀结果对高超声速下微烧蚀机理的研究以及热防护系统的设计具有参考意义.Abstract: Hypersonic reentry vehicles are subjected to a severe aerodynamic thermal environment during a high-speed flight. Accurate prediction of micro-ablation process is quite crucial for the design of thermal protection systems (TPS). Since the aerodynamic shape changes due to the ablation process, which in turn will affect the aerodynamic thermal environment around the aircraft and then the ablation process itself, coupled calculation between the ablation and the flow field is required. This study uses the open source DSMC kernel SPARTA to study the micro-ablation phenomena under extreme conditions for the surfaces of hypersonic reentry vehicles. In order to construct and test a general coupling algorithm, significant improvements have been made to the program. The kinetic ablation model in SPARTA is improved based on the one-dimensional ablation model. Besides, the computing method of the ablation rate has been adapted to be more accurate after employing the ablation surface thermal equilibrium model, and the grid corner values are modified combined with the basic characteristics of Marching Square algorithm and the ablation rate. In this paper, the ablation processes of typical aerodynamic shapes such as cylinders, a blunt cone, and a wedge with a small obstacle are simulated and analyzed under two-dimensional conditions. The predicted surface of cone section along the stagnation streamline shows a faster recession rate, which achieves a good agreement with the result in the literature. In addition, the ablation results of the wedge indicate the existence of an extremely rarefied flow region near the obstacle, which undergoes a distinct shape change rapidly along with the head stagnation point after the ablation process happens. These findings have illuminated the characteristics of the micro-ablation process for the hypersonic reentry vehicles, offering valuable guidance for the design of thermal protection systems and advancing our understanding of the ablation mechanisms pertinent to the hypersonic flight vehicles.
-
Key words:
- ablation /
- DSMC method /
- SPARTA /
- hypersonic reentry /
- chemical nonequilibrium flow
-
表 1 SPARTA计算参数
Table 1. Simulation parameters in SPARTA
Parameter Value Description ${\rho _\infty }$ 1.433 × 1020 number density/m−3 $T_\infty$ 187 particle temperature/K $v_\infty$ 6813 stream velocity/(m·s−1) ${\rm{d}}x,{\rm{d}}y$ 0.0025 grid size/m ${\rm{d}}t$ 4 × 10−7 time step length/s ${T_w}$ 1000 wall temperature/K 表 2 来流条件以及SPARTA设置
Table 2. Free stream conditions and SPARTA parameters of the simulated blunt cone
Parameter Value Description $\rho_\infty$ 1.7 × 1021 number density/m−3 $h$ 70 height/km $T_\infty$ 219.58 particle temperature/K $v_\infty$ 5800 stream velocity/(m·s−1) ${T_{{\rm{wall}}} }$ 4000 temperature of the wall/K ${\rm{d}}x,{\rm{d}}y$ 0.0005 grid size/m ${\rm{d}}t$ 4 × 10−7 time step length/s 表 3 来流条件以及SPARTA设置
Table 3. Free stream conditions and SPARTA parameters of the simulated wedge
Parameter Value Description $h$ 42.5 height/km $T_\infty$ 258.1 particle temperature/K $v_\infty$ 2732.6 stream velocity/(m·s−1) ${T_{{\rm{wall}}} }$ 360 temperature of the wall/K ${\rm{d}}x,{\rm{d}}y$ 0.0002 grid size/m $\rho _\infty$ 5.8 × 1022 number density/m−3 ${\rm{d}}t$ 1 × 10−8 time step length/s -
[1] 陈松, 孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014, 46(1): 20-27 (Chen Song, Sun Quanhua. Analysis of maximum dissociation degree of oxygen during hypersonic flight. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 20-27 (in Chinese) doi: 10.6052/0459-1879-13-146Chen Song, Sun Quanhua. Analysis of maximum dissociation degree of oxygen during hypersonic flight. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(01): 20-27. (in Chinese)) doi: 10.6052/0459-1879-13-146 [2] 国义军, 童福林, 桂业伟. 烧蚀外形方程差分计算方法研究(Ⅱ: 耦合计算). 空气动力学学报, 2010, 28(4): 441-445 (Guo Yijun, Tong Fulin, Gui Yewei. Finite difference schemes for solution of the nosetip shape change equation (PartⅡ, coupling calculation). Acta Aerodynamica Sinica, 2010, 28(4): 441-445 (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.04.014Guo Yijun, Tong Fulin, Gui Yewei. Finite difference schemes for solution of the nosetip shape change equation (PartⅡ, coupling calculation). Acta Aerodynamica Sinica, 2010, 28(04): 441-445. (in Chinese)) doi: 10.3969/j.issn.0258-1825.2010.04.014 [3] Liang J, Li Z, Li X, et al. Monte Carlo simulation of spacecraft reentry aerothermodynamics and analysis for ablating disintegration. Communications in Computational Physics, 2018, 23(4): 1037-1051 [4] 周印佳, 张志贤, 付新卫等. 再入飞行器烧蚀热防护一体化计算方法. 航空学报, 2021, 42(7): 209-218 (Zhou Yinjia, Zhang Zhixian, Fu Xinwei, et al. Integrated computing method for ablative thermal protection system of reentry vehicles. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 209-218 (in Chinese)Zhou Yinjia, Zhang Zhixian, Fu Xinwei, et al. Integrated computing method for ablative thermal protection system of reentry vehicles. Acta Aeronautica et Astronautica Sinica, 2021, 42(07): 209-218 (in Chinese)) [5] 李伟, 方国东, 李玮洁等. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报, 2019, 51(3): 835-844 (Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 835-844 (in Chinese)Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(03): 835-844 (in Chinese)) [6] 胥建宇. 高温流场下模型表面温度与烧蚀量测量方法研究. [硕士论文]. 四川: 电子科技大学, 2021Xu Jianyu. Research on measurement method of model surface temperature and ablation quantity under high temperature flow field. [Master Theses]. Sichuan: University of Electronic Science and Technology of China, 2021 (in Chinese)) [7] 王晓婕. 飞行器沿弹道气动烧蚀过程数值模拟研究. [硕士论文]. 大连: 大连理工大学, 2017Wang Xiaojie. Research on numerical simulation of the process of airspace vehicles' ablation along the trajectory. [Master Theses]. Dalian: Dalian University of Technology, 2017 (in Chinese)) [8] 杨凯威, 梁欢, 赵小程等. 高速飞行器空气舵前缘三维烧蚀/温度耦合分析研究. 导弹与航天运载技术, 2021, 379: 39-44 (Yang Kaiwei, Liang huan, Zhao Xiaocheng, et al. Three-dimensional ablation/temperature coupling analysis of air rudder leading edge of high speed aircraft. Missiles and Space Vehicles, 2021, 379: 39-44 (in Chinese)Yang Kaiwei, Liang huai, Zhao Xiaocheng, et al. Three-dimensional ablation/temperature coupling analysis of air rudder leading edge of high Speed Aircraft. Missiles and Space Vehicles, 2021, No. 379(02): 39-44. (in Chinese)) [9] Boyd ID, Schwartzentruber TE. Nonequilibrium Gas Dynamics and Molecular Simulation. Cambridge University Press, 2017 [10] 田鹏, 李广利, 崔凯等. 高压捕获翼构型的跨流域气动特性. 空气动力学学报, 2021, 39(3): 11-20 (Tian Peng, Li Guangli, Cui Kai, et al. Aerodynamic characteristics of high-pressure capturing wing configuration in multi-regime. Acta Aerodynamica Sinica, 2021, 39(3): 11-20 (in Chinese) doi: 10.7638/kqdlxxb-2020.0144Tian Peng, Li Guangli, Cui Kai, et al. Aerodynamic characteristics of high-pressure capturing wing configuration in multi-regime. Acta Aerodynamica Sinica, 2021, 39(03): 11-20. (in Chinese)) doi: 10.7638/kqdlxxb-2020.0144 [11] Zuppardi G, Mongelluzzo G. Aerodynamic analysis of an entry capsule at titan in transition regime. Journal of Spacecraft and Rockets, 2023, 60(3): 1-9 [12] Zuppardi G, Visone G, Votta R, et al. Analysis of aerodynamic performances of experimental flying test bed in high-altitude flight. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, 225(3): 247-258 doi: 10.1243/09544100JAERO873 [13] Lebeau GJ. A parallel implementation of the direct simulation Monte Carlo method. Computer Methods in Applied Mechanics and Engineering, 1999, 174(3/4): 319-337 [14] Lebeau GJ, Ⅲ FEL. Application highlights of the DSMC analysis code (DAC) software for simulating rarefied flows. Computer Methods in Applied Mechanics & Engineering, 2001, 191(6/7): 595-609 [15] Dietrich S, Id B. Scalar and parallel optimized implementation of the direct simulation Monte Carlo method. Journal of Computational Physics, 1996, 126(2): 328-342 [16] Scanlon TJ, Roohi E, White C, et al. An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Computers & Fluids, 2010, 39(10): 2078-2089 [17] White C, Borg MK, Scanlon TJ, et al. DSMC Foam+ : An OpenFOAM based direct simulation Monte Carlo solver. Computer Physics Communications, 2018, 224: 22-43 doi: 10.1016/j.cpc.2017.09.030 [18] Plimpton SJ, Moore SG, Borner A, et al. Direct simulation Monte Carlo on petaflop supercomputers and beyond. Physics of Fluids, 2019, 31(8): 086101 [19] Feng K, Tian P, Zhang J, et al. SPARTACUS: An open-source unified stochastic particle solver for the simulation of multiscale nonequilibrium gas flows. Computer Physics Communications, 2023, 284: 108607 doi: 10.1016/j.cpc.2022.108607 [20] 许珂. 基于分离流转捩点位置预测的飞行器气动外形设计技术研究. [硕士论文]. 四川: 电子科技大学, 2021Xu Ke. Research on aerodynamic shape design technology of aircraft based on the prediction of transition point of separation flow. [Master Theses]. Sichuan: University of Electronic Science and Technology of China, 2021 (in Chinese)) [21] 龙丽平, 韩俊, 万田等. 再入飞行器端头烧蚀的耦合计算方法. 强度与环境, 2021, 48(2): 8-14 (Long Liping, Han Jun, Wang Tian, et al. Research of coupling computational method about the nose-tip ablation of reentry vehicle. Structure & Environment Engineering, 2021, 48(2): 8-14 (in Chinese) doi: 10.19447/j.cnki.11-1773/v.2021.02.002Long Liping, Han Jun, Wang Tian, et al. Research of coupling computational method about the nose-tip ablation of reentry vehicle. Structure & Environment Engineering, 2021, 48(02): 8-14. (in Chinese)) doi: 10.19447/j.cnki.11-1773/v.2021.02.002 [22] 杨丰. 基于工程算法的材料烧蚀数值仿真. [硕士论文]. 南京: 南京理工大学, 2017Yang Feng. Numerical simulation of material ablation based on engineering calculation. [Master Theses]. Nanjing: Nanjing University of Science & Technology, 2017 (in Chinese)) [23] 郭俊行, 张亨, 海腾蛟等. 火炮身管试样烧蚀试验及数值模拟分析. 火炮发射与控制学报, 2022, 43(3): 74-79 (Guo Junxing, Zhang Heng, Hai Tengjiao, et al. A study of erosion experiment for gun barrel sample and numerical simulation. Journal of Gun Launch &Control, 2022, 43(3): 74-79 (in Chinese)Guo Junxing, Zhang Heng, Hai Tengjiao, et al. A study of erosion experiment for gun barrel sample and numerical simulation. Journal of Gun Launch & Control, 2022, 43(03): 74-79. (in Chinese)) [24] 张涛, 孙冰. 航天器再入全过程轴对称烧蚀热防护数值仿真研究.宇航学报, 2011, 32(5): 1195-1204Zhang Tao, Sun Bing. Numerical simulation research on axis-symmetrical ablative thermal protection for spacecraft in whole reentry. Journal of Astronautics, 2011,32(5): 1195-1204 (in English)) [25] 端木正. 基于气动热化学轴对称烧蚀的仿真. [硕士论文]. 北京: 北京交通大学, 2010Duan Muzheng. Simulation for ablation of axial symmetry based on aerothermochemistry. [Master Theses]. Beijing: Beijing Jiaotong University, 2010 (in Chinese)) [26] 高铁锁, 丁明松, 傅杨奥骁等. 高超声速再入体表面热解烧蚀效应数值模拟. 气体物理, 2023, 8(1): 58-67 (Gao Tiesuo, Ding Mingsong, Fu Yangaoxiao, et al. Numerical simulation on pyrolysis and ablation effects for surface materical of hypersonic reentry body. Physics of Gases, 2023, 8(1): 58-67 (in Chinese)Gao Tiesuo, Ding Mingsong, Fu Yangaoxiao, et al. Numerical simulation on pyrolysis and ablation effects for surface materical of hypersonic reentry body. Physics of Gases, 2023, 8(01): 58-67. (in Chinese)) [27] Bott L, Chen S, Stemmer C. DSMC study of hypersonic ablation using SPARTA//2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions & Engineering. Heilbronn, June 19-23, 2022 [28] Chen YK, Milos FS, Gokcen T. Loosely coupled simulation for two-dimensional ablation and shape change. Journal of Spacecraft and Rockets, 2010, 47(5): 775-785 doi: 10.2514/1.39667 [29] Stemmer C, Birrer M, Adams NA. Hypersonic boundary-layer flow with an obstacle in thermochemical equilibrium and nonequilibrium. Journal of Spacecraft and Rockets, 2017, 54(4): 899-915 doi: 10.2514/1.A32984 [30] Chen S, Stemmer C. Modeling of thermochemical nonequilibrium flows using open-source direct simulation monte carlo kernel SPARTA. Journal of Spacecraft and Rockets, 2022, 59(5): 1634-1646 doi: 10.2514/1.A35359 -