EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DSMC方法的再入飞行器微烧蚀研究

甘驰 陈松 张俊

甘驰, 陈松, 张俊. 基于DSMC方法的再入飞行器微烧蚀研究. 力学学报, 2023, 55(9): 1847-1857 doi: 10.6052/0459-1879-23-112
引用本文: 甘驰, 陈松, 张俊. 基于DSMC方法的再入飞行器微烧蚀研究. 力学学报, 2023, 55(9): 1847-1857 doi: 10.6052/0459-1879-23-112
Gan Chi, Chen Song, Zhang Jun. DSMC study of micro-ablation for reentry vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1847-1857 doi: 10.6052/0459-1879-23-112
Citation: Gan Chi, Chen Song, Zhang Jun. DSMC study of micro-ablation for reentry vehicles. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1847-1857 doi: 10.6052/0459-1879-23-112

基于DSMC方法的再入飞行器微烧蚀研究

doi: 10.6052/0459-1879-23-112
基金项目: 国家自然科学基金资助项目(12272028)
详细信息
    通讯作者:

    陈松, 副教授, 主要研究方向为稀薄气体动力学与高超声速烧蚀. E-mail: chensong@buaa.edu.cn

  • 中图分类号: V411.8

DSMC STUDY OF MICRO-ABLATION FOR REENTRY VEHICLES

  • 摘要: 高超声速再入飞行器面临着严峻的气动热环境, 准确预测微烧蚀过程对热防护系统的设计至关重要. 由于烧蚀会改变气动外形, 进而影响周围的气动热环境以及烧蚀过程本身, 因此需要将烧蚀过程与流场变化进行耦合计算. 文章采用基于直接模拟蒙特卡洛(DSMC)方法的开源程序SPARTA, 对高超声速条件下的再入飞行器表面微烧蚀问题展开研究. 为构建并测试通用的耦合算法, 通过典型的一维烧蚀模型改进了SPARTA的动能烧蚀模型并采用烧蚀表面热平衡模型计算烧蚀速率, 结合Marching Square算法的特点修改了网格节点的计算方法. 针对柱体、球锥以及带有微小粗糙元的斜楔体等典型外形, 文中计算了二维条件下不同气动外形的烧蚀过程并进行了详细分析. 其中球锥截面烧蚀预测结果中沿驻点线的烧蚀面呈现出较快的衰退速率, 并且与文献中驻点附近的结果吻合情况较好. 斜楔体的烧蚀结果表明, 微小粗糙元的附近存在着非常稀薄的流场区域, 并且其与头部驻点区域会率先发生烧蚀, 反映了再入飞行器表面的微烧蚀特征. 烧蚀结果对高超声速下微烧蚀机理的研究以及热防护系统的设计具有参考意义.

     

  • 图  1  SPARTA基本工作流程图

    Figure  1.  The basic flowchart of SPARTA

    图  2  Marching Square算法的填充规则

    Figure  2.  Look up table of Marching Square algorithm

    图  3  SPARTA烧蚀外形划分示意图

    Figure  3.  The schematic of how SPARTA generates ablation geometry

    图  4  SPARTA烧蚀循环示意图

    Figure  4.  Flowchart of ablation cycle in SPARTA

    图  5  SPARTA模拟烧蚀过程示意图

    Figure  5.  Simulated ablation process of SPARTA

    图  6  二维方柱烧蚀过程

    Figure  6.  The ablation process of the rectangular cylinder

    图  7  二维方柱绕流速度场云图

    Figure  7.  The velocity contour of the rectangular cylinder

    图  8  二维圆柱烧蚀过程

    Figure  8.  The ablation of the two-dimensional cylinder

    图  9  二维圆柱绕流温度场云图

    Figure  9.  The temperature contour of the two-dimensional cylinder

    图  10  球锥截面气动外形

    Figure  10.  Aerodynamics geometry of the blunt cone section

    图  11  球锥截面烧蚀温度场云图

    Figure  11.  The temperature contour of the ablated blunt cone section

    图  12  SPARTA预测烧蚀外形与文献[21]结果对比

    Figure  12.  The surface recession predicted by SPARTA and the comparison with the result in Ref. [21]

    图  13  斜楔体截面外形示意图

    Figure  13.  Geometry of the wedge with an obstacle

    图  14  带有局部粗糙元的斜楔体烧蚀过程

    Figure  14.  The ablation process of the obstacle on the wedge

    图  16  带有局部粗糙元的斜楔体克努森数云图

    Figure  16.  The Knudsen number contour of the wedge with an obstacle

    图  15  带有局部粗糙元的斜楔体温度场云图

    Figure  15.  The temperature contour of the wedge with an obstacle

    表  1  SPARTA计算参数

    Table  1.   Simulation parameters in SPARTA

    ParameterValueDescription
    ${\rho _\infty }$1.433 × 1020number density/m−3
    $T_\infty$187particle temperature/K
    $v_\infty$6813stream velocity/(m·s−1)
    ${\rm{d}}x,{\rm{d}}y$0.0025grid size/m
    ${\rm{d}}t$4 × 10−7time step length/s
    ${T_w}$1000wall temperature/K
    下载: 导出CSV

    表  2  来流条件以及SPARTA设置

    Table  2.   Free stream conditions and SPARTA parameters of the simulated blunt cone

    ParameterValueDescription
    $\rho_\infty$1.7 × 1021number density/m−3
    $h$70height/km
    $T_\infty$219.58particle temperature/K
    $v_\infty$5800stream velocity/(m·s−1)
    ${T_{{\rm{wall}}} }$4000temperature of the wall/K
    ${\rm{d}}x,{\rm{d}}y$0.0005grid size/m
    ${\rm{d}}t$4 × 10−7time step length/s
    下载: 导出CSV

    表  3  来流条件以及SPARTA设置

    Table  3.   Free stream conditions and SPARTA parameters of the simulated wedge

    ParameterValueDescription
    $h$42.5height/km
    $T_\infty$258.1particle temperature/K
    $v_\infty$2732.6stream velocity/(m·s−1)
    ${T_{{\rm{wall}}} }$360temperature of the wall/K
    ${\rm{d}}x,{\rm{d}}y$0.0002grid size/m
    $\rho _\infty$5.8 × 1022number density/m−3
    ${\rm{d}}t$1 × 10−8time step length/s
    下载: 导出CSV
  • [1] 陈松, 孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014, 46(1): 20-27 (Chen Song, Sun Quanhua. Analysis of maximum dissociation degree of oxygen during hypersonic flight. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 20-27 (in Chinese) doi: 10.6052/0459-1879-13-146

    Chen Song, Sun Quanhua. Analysis of maximum dissociation degree of oxygen during hypersonic flight. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(01): 20-27. (in Chinese)) doi: 10.6052/0459-1879-13-146
    [2] 国义军, 童福林, 桂业伟. 烧蚀外形方程差分计算方法研究(Ⅱ: 耦合计算). 空气动力学学报, 2010, 28(4): 441-445 (Guo Yijun, Tong Fulin, Gui Yewei. Finite difference schemes for solution of the nosetip shape change equation (PartⅡ, coupling calculation). Acta Aerodynamica Sinica, 2010, 28(4): 441-445 (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.04.014

    Guo Yijun, Tong Fulin, Gui Yewei. Finite difference schemes for solution of the nosetip shape change equation (PartⅡ, coupling calculation). Acta Aerodynamica Sinica, 2010, 28(04): 441-445. (in Chinese)) doi: 10.3969/j.issn.0258-1825.2010.04.014
    [3] Liang J, Li Z, Li X, et al. Monte Carlo simulation of spacecraft reentry aerothermodynamics and analysis for ablating disintegration. Communications in Computational Physics, 2018, 23(4): 1037-1051
    [4] 周印佳, 张志贤, 付新卫等. 再入飞行器烧蚀热防护一体化计算方法. 航空学报, 2021, 42(7): 209-218 (Zhou Yinjia, Zhang Zhixian, Fu Xinwei, et al. Integrated computing method for ablative thermal protection system of reentry vehicles. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 209-218 (in Chinese)

    Zhou Yinjia, Zhang Zhixian, Fu Xinwei, et al. Integrated computing method for ablative thermal protection system of reentry vehicles. Acta Aeronautica et Astronautica Sinica, 2021, 42(07): 209-218 (in Chinese))
    [5] 李伟, 方国东, 李玮洁等. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报, 2019, 51(3): 835-844 (Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 835-844 (in Chinese)

    Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(03): 835-844 (in Chinese))
    [6] 胥建宇. 高温流场下模型表面温度与烧蚀量测量方法研究. [硕士论文]. 四川: 电子科技大学, 2021

    Xu Jianyu. Research on measurement method of model surface temperature and ablation quantity under high temperature flow field. [Master Theses]. Sichuan: University of Electronic Science and Technology of China, 2021 (in Chinese))
    [7] 王晓婕. 飞行器沿弹道气动烧蚀过程数值模拟研究. [硕士论文]. 大连: 大连理工大学, 2017

    Wang Xiaojie. Research on numerical simulation of the process of airspace vehicles' ablation along the trajectory. [Master Theses]. Dalian: Dalian University of Technology, 2017 (in Chinese))
    [8] 杨凯威, 梁欢, 赵小程等. 高速飞行器空气舵前缘三维烧蚀/温度耦合分析研究. 导弹与航天运载技术, 2021, 379: 39-44 (Yang Kaiwei, Liang huan, Zhao Xiaocheng, et al. Three-dimensional ablation/temperature coupling analysis of air rudder leading edge of high speed aircraft. Missiles and Space Vehicles, 2021, 379: 39-44 (in Chinese)

    Yang Kaiwei, Liang huai, Zhao Xiaocheng, et al. Three-dimensional ablation/temperature coupling analysis of air rudder leading edge of high Speed Aircraft. Missiles and Space Vehicles, 2021, No. 379(02): 39-44. (in Chinese))
    [9] Boyd ID, Schwartzentruber TE. Nonequilibrium Gas Dynamics and Molecular Simulation. Cambridge University Press, 2017
    [10] 田鹏, 李广利, 崔凯等. 高压捕获翼构型的跨流域气动特性. 空气动力学学报, 2021, 39(3): 11-20 (Tian Peng, Li Guangli, Cui Kai, et al. Aerodynamic characteristics of high-pressure capturing wing configuration in multi-regime. Acta Aerodynamica Sinica, 2021, 39(3): 11-20 (in Chinese) doi: 10.7638/kqdlxxb-2020.0144

    Tian Peng, Li Guangli, Cui Kai, et al. Aerodynamic characteristics of high-pressure capturing wing configuration in multi-regime. Acta Aerodynamica Sinica, 2021, 39(03): 11-20. (in Chinese)) doi: 10.7638/kqdlxxb-2020.0144
    [11] Zuppardi G, Mongelluzzo G. Aerodynamic analysis of an entry capsule at titan in transition regime. Journal of Spacecraft and Rockets, 2023, 60(3): 1-9
    [12] Zuppardi G, Visone G, Votta R, et al. Analysis of aerodynamic performances of experimental flying test bed in high-altitude flight. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, 225(3): 247-258 doi: 10.1243/09544100JAERO873
    [13] Lebeau GJ. A parallel implementation of the direct simulation Monte Carlo method. Computer Methods in Applied Mechanics and Engineering, 1999, 174(3/4): 319-337
    [14] Lebeau GJ, Ⅲ FEL. Application highlights of the DSMC analysis code (DAC) software for simulating rarefied flows. Computer Methods in Applied Mechanics & Engineering, 2001, 191(6/7): 595-609
    [15] Dietrich S, Id B. Scalar and parallel optimized implementation of the direct simulation Monte Carlo method. Journal of Computational Physics, 1996, 126(2): 328-342
    [16] Scanlon TJ, Roohi E, White C, et al. An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries. Computers & Fluids, 2010, 39(10): 2078-2089
    [17] White C, Borg MK, Scanlon TJ, et al. DSMC Foam+ : An OpenFOAM based direct simulation Monte Carlo solver. Computer Physics Communications, 2018, 224: 22-43 doi: 10.1016/j.cpc.2017.09.030
    [18] Plimpton SJ, Moore SG, Borner A, et al. Direct simulation Monte Carlo on petaflop supercomputers and beyond. Physics of Fluids, 2019, 31(8): 086101
    [19] Feng K, Tian P, Zhang J, et al. SPARTACUS: An open-source unified stochastic particle solver for the simulation of multiscale nonequilibrium gas flows. Computer Physics Communications, 2023, 284: 108607 doi: 10.1016/j.cpc.2022.108607
    [20] 许珂. 基于分离流转捩点位置预测的飞行器气动外形设计技术研究. [硕士论文]. 四川: 电子科技大学, 2021

    Xu Ke. Research on aerodynamic shape design technology of aircraft based on the prediction of transition point of separation flow. [Master Theses]. Sichuan: University of Electronic Science and Technology of China, 2021 (in Chinese))
    [21] 龙丽平, 韩俊, 万田等. 再入飞行器端头烧蚀的耦合计算方法. 强度与环境, 2021, 48(2): 8-14 (Long Liping, Han Jun, Wang Tian, et al. Research of coupling computational method about the nose-tip ablation of reentry vehicle. Structure & Environment Engineering, 2021, 48(2): 8-14 (in Chinese) doi: 10.19447/j.cnki.11-1773/v.2021.02.002

    Long Liping, Han Jun, Wang Tian, et al. Research of coupling computational method about the nose-tip ablation of reentry vehicle. Structure & Environment Engineering, 2021, 48(02): 8-14. (in Chinese)) doi: 10.19447/j.cnki.11-1773/v.2021.02.002
    [22] 杨丰. 基于工程算法的材料烧蚀数值仿真. [硕士论文]. 南京: 南京理工大学, 2017

    Yang Feng. Numerical simulation of material ablation based on engineering calculation. [Master Theses]. Nanjing: Nanjing University of Science & Technology, 2017 (in Chinese))
    [23] 郭俊行, 张亨, 海腾蛟等. 火炮身管试样烧蚀试验及数值模拟分析. 火炮发射与控制学报, 2022, 43(3): 74-79 (Guo Junxing, Zhang Heng, Hai Tengjiao, et al. A study of erosion experiment for gun barrel sample and numerical simulation. Journal of Gun Launch &Control, 2022, 43(3): 74-79 (in Chinese)

    Guo Junxing, Zhang Heng, Hai Tengjiao, et al. A study of erosion experiment for gun barrel sample and numerical simulation. Journal of Gun Launch & Control, 2022, 43(03): 74-79. (in Chinese))
    [24] 张涛, 孙冰. 航天器再入全过程轴对称烧蚀热防护数值仿真研究.宇航学报, 2011, 32(5): 1195-1204

    Zhang Tao, Sun Bing. Numerical simulation research on axis-symmetrical ablative thermal protection for spacecraft in whole reentry. Journal of Astronautics, 2011,32(5): 1195-1204 (in English))
    [25] 端木正. 基于气动热化学轴对称烧蚀的仿真. [硕士论文]. 北京: 北京交通大学, 2010

    Duan Muzheng. Simulation for ablation of axial symmetry based on aerothermochemistry. [Master Theses]. Beijing: Beijing Jiaotong University, 2010 (in Chinese))
    [26] 高铁锁, 丁明松, 傅杨奥骁等. 高超声速再入体表面热解烧蚀效应数值模拟. 气体物理, 2023, 8(1): 58-67 (Gao Tiesuo, Ding Mingsong, Fu Yangaoxiao, et al. Numerical simulation on pyrolysis and ablation effects for surface materical of hypersonic reentry body. Physics of Gases, 2023, 8(1): 58-67 (in Chinese)

    Gao Tiesuo, Ding Mingsong, Fu Yangaoxiao, et al. Numerical simulation on pyrolysis and ablation effects for surface materical of hypersonic reentry body. Physics of Gases, 2023, 8(01): 58-67. (in Chinese))
    [27] Bott L, Chen S, Stemmer C. DSMC study of hypersonic ablation using SPARTA//2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions & Engineering. Heilbronn, June 19-23, 2022
    [28] Chen YK, Milos FS, Gokcen T. Loosely coupled simulation for two-dimensional ablation and shape change. Journal of Spacecraft and Rockets, 2010, 47(5): 775-785 doi: 10.2514/1.39667
    [29] Stemmer C, Birrer M, Adams NA. Hypersonic boundary-layer flow with an obstacle in thermochemical equilibrium and nonequilibrium. Journal of Spacecraft and Rockets, 2017, 54(4): 899-915 doi: 10.2514/1.A32984
    [30] Chen S, Stemmer C. Modeling of thermochemical nonequilibrium flows using open-source direct simulation monte carlo kernel SPARTA. Journal of Spacecraft and Rockets, 2022, 59(5): 1634-1646 doi: 10.2514/1.A35359
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  43
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-08-13
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回