EI、Scopus 收录
中文核心期刊

磁驱动中心对称挠曲电夹层板力电耦合性能分析

ON THE MAGNETICALLY INDUCED ELECTROMECHANICAL COUPLING OF CENTROSYMMETRIC FLEXOELECTRIC SANDWICH PLATE

  • 摘要: 现代工业的发展对材料性能和结构尺寸提出更高的要求, 机电器件的设计越来越偏向于小型化、高频化和智能化. 最新研究成果表明, 磁电耦合复合材料不仅能够以较强的磁电转换效率实现磁能、机械能和电能之间的相互转换, 还可以避免结构与机械驱动源的直接接触, 实现非接触调控, 这对于制备多功能微纳米器件具有重要意义. 文章基于Mindlin所发展的多物理场结构理论分析方法, 结合宏观压磁理论和偶应力挠曲电理论, 研究由单个挠曲电电介质层和两个对称压磁层构成的三明治型夹层板在外部横向磁场驱动下的动态力电耦合响应, 其中通过引入曲率将经典力电耦合理论拓宽到中心对称材料. 夹层板在正弦型全局磁场和均布局部磁场驱动下的动态数值算例表明: 位移和电势具有一定的频率依赖性, 当激振频率达到固有频率时, 振幅达到最大值; 此外, 对称式驱动压磁层分布方式趋于提高多层复合板的力电耦合性能. 文章理论模型和研究结果可为磁控机电器件的优化设计提供新的改进思路.

     

    Abstract: The development of modern industry inspires higher requirements for material properties and structural dimensions. The design of electromechanical devices is increasingly biased towards miniaturization, high frequency and intelligence. The most recent studies demonstrate that composite materials with magnetoelectric coupling can not only achieve mutual conversion of magnetic, mechanical, and electrical energy with high magnetoelectric conversion efficiencies, but can also avoid direct contact between the structure and the mechanical driving source to achieve non-contact control, which is crucial for the creation of multifunctional micro and nanoscale devices. Based on the multi-physics structural analysis framework developed by Mindlin, this paper studies the dynamic electromechanical coupling response of a sandwich plate composed of a flexoelectric dielectric layer and two symmetric piezomagnetic layers induced by external transverse magnetic fields. The macroscopic piezomagnetic and curvature-induced flexoelectric theories are employed and the classical electromechanical coupling theory is extended to centrosymmetric materials. The dynamic numerical examples of the sandwich plate driven by a sinusoidal global magnetic field and a uniformly distributed local magnetic field show that the magnitudes of displacement and potential are frequency dependent. When the excitation frequency reaches the natural frequency, the amplitude reaches the maximum. In addition, the distribution of symmetrical piezomagnetic layer tends to improve the electromechanical coupling performance of multilayer composite plates. Both the theoretical model and numerical results provide new ideas for the optimization design of magnetic-controlled electromechanical devices.

     

/

返回文章
返回