EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

理想后视镜绕流影响下边界层壁面压力脉动研究

刘伯峰 吴霆 朱力行

刘伯峰, 吴霆, 朱力行. 理想后视镜绕流影响下边界层壁面压力脉动研究. 力学学报, 2023, 55(9): 1820-1833 doi: 10.6052/0459-1879-23-100
引用本文: 刘伯峰, 吴霆, 朱力行. 理想后视镜绕流影响下边界层壁面压力脉动研究. 力学学报, 2023, 55(9): 1820-1833 doi: 10.6052/0459-1879-23-100
Liu Bofeng, Wu Ting, Zhu Lixing. Characteristics of wall pressure fluctuations for a boundary layer affected by flow over an ideal side mirror. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1820-1833 doi: 10.6052/0459-1879-23-100
Citation: Liu Bofeng, Wu Ting, Zhu Lixing. Characteristics of wall pressure fluctuations for a boundary layer affected by flow over an ideal side mirror. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1820-1833 doi: 10.6052/0459-1879-23-100

理想后视镜绕流影响下边界层壁面压力脉动研究

doi: 10.6052/0459-1879-23-100
基金项目: 国家自然科学基金(11988102, 12202454和12002344)和国家专项工程(GJXM92579)资助项目
详细信息
    通讯作者:

    朱力行, 助理研究员, 主要研究方向为湍流与流体力学. E-mail: zlx@imech.ac.cn

  • 中图分类号: O357

CHARACTERISTICS OF WALL PRESSURE FLUCTUATIONS FOR A BOUNDARY LAYER AFFECTED BY FLOW OVER AN IDEAL SIDE MIRROR

  • 摘要: 钝体绕流引起的壁面压力脉动是气动/振动噪声的主要激励源. 钝体绕流引起的流动较为复杂, 无法直接采用基于平板边界层的模型直接模化壁面压力. 因此, 分析钝体绕流影响下的壁面压力在水下潜航器、汽车以及飞行器的自噪声和辐射噪声预测中具有重要意义. 文章以理想汽车后视镜绕流为例, 采用大涡模拟方法结合不同的亚格子湍流模型, 开展了后视镜下游壁面压力脉动时空性质的数值研究. 数值模拟中, 壁面压力相关统计量如压力系数和频率谱与文献中的数值和实验结果均相符. 藉由不同的相速度, 在时空能谱中分离了壁面压力脉动的3个特征流动: 对流、回流和声传播. 后视镜下游壁面压力脉动的空间谱, 相比于平板边界层, 出现等值线形状弯曲的现象. 通过基于泰勒冻结假设的统计分析, 得到了壁面压力脉动对流速度的空间分布. 根据对流速度, 壁面压力脉动在物理空间上可以分为: 回流区、稳定对流区和过渡区. 稳定对流区的壁面压力脉动的空间谱未出现弯曲现象, 而其空间关联半衰长度与频率倒数成正比, 表现出了经典平板边界层理论中的定量特性. 该工作表明, 钝体绕流使得边界层壁面压力传播方向发生偏转, 而壁面压力脉动在偏转后的稳定对流区依然保有平板边界层中的时空统计特性.

     

  • 图  1  后视镜绕流几何配置: 理想汽车后视镜与平板 (单位: m)

    Figure  1.  Schematic diagram of the problem: a generic side mirror and a plate (unit: m)

    图  2  计算域设置 (单位: m)

    Figure  2.  Computational set-ups (unit: m)

    图  3  后视镜绕流壁面压力脉动探测点: 后视镜表面(S1 ~ S8)和玻璃窗表面(S9 ~ S10)

    Figure  3.  Arrangement of pressure sensors: the side-mirror surface (S1 ~ S8) and the window surface (S9 ~ S10)

    图  4  无量纲壁面压力脉动单边功率谱密度$\psi_{\rm{pp}}/(0.25\rho_\infty^2 U_\infty^3 D_{\rm{mr}})$. 实线为本文大涡模拟结果(WALE和SMA), 红色圆圈是实验结果[25], 三角和方块为文献中的数值结果[19-20]

    Figure  4.  Dimensionless PSD of wall pressure fluctuation $\psi_{\rm{pp}}/(0.25\rho_\infty^2 U_\infty^3 D_{\rm{mr}})$. Solid line (WALE and SMA in present work), red circles (experimental reference[25]), and triangles and squares (numerical reference[19-20])

    图  5  大涡模拟时均流场流线(SMA模型): 蓝色为流经后视镜侧面的流线, 红色为流经后视镜顶部的流线

    Figure  5.  Streamlines of time-averaged flow fields in LES (SMA): blue are those passing around lateral sides, and red are those going over the top

    图  6  基于SMA模型的大涡模拟结果

    Figure  6.  LES results with SMA model

    图  7  玻璃窗口内无量纲壁面压力时空能谱(对流方向). 虚线对应的特征速度分别为: 红色($ \pm c_\infty+u_\infty $)、绿色($ u_\infty $)、紫色($ 0.3 u_\infty $)、黑色($ -0.15 u_\infty $)和蓝色($ -0.675 u_\infty $)

    Figure  7.  Wall pressure wavenumber-frequency spectrum $ \chi_C $. Phase speeds denoted by dashed lines are: red ($ \pm c_\infty+u_\infty $), green ($ u_\infty $), purple ($ 0.3 u_\infty $), black ($ -0.15 u_\infty $), and blue ($ -0.675 u_\infty $)

    图  8  不同频率下玻璃窗口内无量纲压力波数谱: 频率范围$\omega_0/(2\text{π})\in[100,200,500]$ Hz (从左至右)

    Figure  8.  Dimensionless wavenumber spectra of wall pressure on the window at various frequencies: $\omega_0/(2\text{π})\in[100,200,500]$ Hz (from left to right)

    图  9  玻璃窗口处的无量纲对流速度的流线分布和偏转角

    Figure  9.  Streamlines and the deflection angle of the convection speed on the window

    图  10  稳定对流区内无量纲壁面压力脉动波数频率谱

    Figure  10.  Dimensionless wall pressure wavenumber-frequency spectrum in the steady-convection zone

    图  11  不同频率下稳定对流区内无量纲化压力波数谱: 频率范围$\omega_0/(2\text{π})\in[100,200,500]$ Hz (从左至右)

    Figure  11.  Dimensionless wavenumber spectra of wall pressure in the steady-convection zone at various frequencies: $\omega_0/(2\text{π})\in[100,200,500]$ Hz (from left to right)

    图  12  稳定对流区压力空间关联系数: 频率范围$\omega_0/(2\text{π})\in[100,200]$ Hz

    Figure  12.  Spatial correlation coefficients in the steady-convection zone: $\omega_0/(2\text{π})\in[100,200]$ Hz

    图  13  空间关联半衰长度与频率倒数的线性拟合

    Figure  13.  Linear regression of the half-width of the spatial correlation and the inverse of the frequency

    表  1  后视镜表面探测点坐标:S1 ~ S10 (坐标原点为后视镜底面前缘, 单位: m)

    Table  1.   Coordinates of pressure sensors: S1 ~ S10 (the origin of coordinate system rests in the front of the mirror's bottom, unit: m)

    Coordinate S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
    x 0.094 0 0.074 0 0.000 0 0.000 0 0.074 2 0.100 0 0.100 0 0.100 0 0.200 0 0.498 0
    y 0.225 8 0.296 6 0.200 0 0.033 4 0.133 4 0.150 0 0.250 0 0.117 0 0.000 0 0.000 0
    z −0.099 8 0.000 0 0.000 0 0.000 0 −0.096 6 −0.085 0 0.000 0 0.085 0 0.000 0 −0.142 0
    下载: 导出CSV

    表  2  后视镜表面探测点的时均压力系数:S1 ~ S7

    Table  2.   Time-averaged pressure coefficients at various locations on the side mirror: S1 ~ S7

    Probes S1 S2 S3 S4 S5 S6 S7
    experiment[25] −0.629 −0.725 0.886 0.991 −0.753 −0.507 −0.484
    C-LES[20] −0.457 −0.592 0.879 0.991 −0.557 −0.498 −0.512
    C-LES[21] −0.537 0.892 −0.925 −0.451
    I-LES[19] −0.727 −0.898 0.898 0.1 −1.102 −0.477 −0.443
    WALE (Eq.(7)) −0.718 −0.884 0.912 1.011 −1.105 −0.521 −0.496
    SMA (Eq.(5)) −0.617 −0.911 0.920 1.023 −1.011 −0.556 −0.516
    下载: 导出CSV
  • [1] Blake WK. Mechanics of Flow-Induced Sound and Vibration. Academic Press, 2017
    [2] Glegg S, Devenport W. Aeroacoustics of Low Mach Number Flows. Academic Press, 2017
    [3] Wilby JF. Aircraft interior noise. Journal of Sound and Vibration, 1996, 190(3): 545-564 doi: 10.1006/jsvi.1996.0078
    [4] Howard CQ. Recent developments in submarine vibration isolation and noise control//Proceedings of the 1st Submarine Science Technology and Engineering Conference. Australia, 2011: 8
    [5] Maxit L, Guasch O, Meyer V, et al. Noise radiated from a periodically stiffened cylindrical shell excited by a turbulent boundary layer. Journal of Sound and Vibration, 2020, 466: 115016 doi: 10.1016/j.jsv.2019.115016
    [6] Culla A, DffAmbrogio W, Fregolent A, et al. Vibroacoustic optimization using a statistical energy analysis model. Journal of Sound and Vibration, 2016, 375: 102-114 doi: 10.1016/j.jsv.2016.04.026
    [7] Deng T, Sheng X, Jeong H, et al. A twoand-half dimensional finite element/boundary element model for predicting the vibro-acoustic behaviour of panels with poro-elastic media. Journal of Sound and Vibration, 2021, 505: 116147 doi: 10.1016/j.jsv.2021.116147
    [8] 陈增涛, 王发杰, 王超. 广义有限差分法在含阻抗边界空腔声学分析中的应用. 力学学报, 2021, 53(4): 1183-1195 (Chen Zengtao, Wang Fajie, Wang Chao. Application of generalized finite difference method in acoustic analysis of cavity with impedance boundary. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1183-1195 (in Chinese) doi: 10.6052/0459-1879-20-311

    Chen Zengtao, Wang Fajie, Wang Chao. Application of generalized finite difference method in acoustic analysis of cavity with impedance boundary. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1183-1195 (in Chinese) doi: 10.6052/0459-1879-20-311
    [9] Abshagen J, Nejedl V. Towed body measurements of flow noise from a turbulent boundary layer under sea conditions. The Journal of the Acoustical Society of America, 2014, 135(2): 637-645 doi: 10.1121/1.4861238
    [10] Hubbard HH. Aeroacoustics of flight vehicles: Theory and practice. Noise Control. Volume 2. NASA, 1991. NASA-RP-1258-VOL-2.
    [11] Wu T, He G. Space-time energy spectra in turbulent shear flows. Physical Review Fluids, 2021, 6(10): 100504 doi: 10.1103/PhysRevFluids.6.100504
    [12] Miller TS, Gallman JM, Moeller MJ. Review of turbulent boundary layer models for acoustic analysis. Journal of Aircraft, 2012, 49(6): 1739-1754 doi: 10.2514/1.C031405
    [13] Corcos GM. The structure of the turbulent pressure field in boundary-layer flows. Journal of Fluid Mechanics, 1964, 18(3): 353-378 doi: 10.1017/S002211206400026X
    [14] Graham WR. Boundary layer induced noise in aircraft. Part I: The flat plate model. Journal of Sound and Vibration, 1996, 192(1): 101-120 doi: 10.1006/jsvi.1996.0178
    [15] Mazzeo G, Ichchou M, Petrone G, et al. Pseudo-equivalent deterministic excitation method application for experimental reproduction of a structural response to a turbulent boundary layer excitation. The Journal of the Acoustical Society of America, 2022, 152(3): 1498-1514
    [16] 邱翔, 吴昊东, 陶亦舟等. 近壁面圆柱绕流中尾流结构演化特性的实验研究. 力学学报, 2022, 54(11): 3042-3057 (Qiu Xiang, Wu Haodong, Tao Yizhou, et al. Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057 (in Chinese) doi: 10.6052/0459-1879-22-403

    Qiu Xiang, Wu Haodong, Tao Yizhou, et al. Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057 (in Chinese) doi: 10.6052/0459-1879-22-403
    [17] 李曌斌, 董国丹, 秦建华等. 浮式风力机运动形式对尾迹大尺度运动的影响. 空气动力学学报, 2022, 40(4): 231-239 (Li Zhaobin, Dong Guodan, Qin Jianhua, et al. Coherent flow structures in the wake of floating wind turbines induced by motions in different degrees of freedom. Acta Aerodynamica Sinica, 2022, 40(4): 231-239 (in Chinese) doi: 10.7638/kqdlxxb-2022.0057

    Li Zhaobin, Dong Guodan, Qin Jianhua, et al. Coherent flow structures in the wake of floating wind turbines induced by motions in different degrees of freedom. Acta Aerodynamica Sinica, 2022, 40(4): 231-239 (in Chinese) doi: 10.7638/kqdlxxb-2022.0057
    [18] Zhou Z, Li Z, Yang X, et al. Investigation of the wake characteristics of an underwater vehicle with and without a propeller. Ocean Engineering, 2022, 266: 113107 doi: 10.1016/j.oceaneng.2022.113107
    [19] Ask J, Davidson L. The sub-critical flow past a generic side mirror and its impact on sound generation and propagation//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). American Institute of Aeronautics and Astronautics, 2006
    [20] Yao HD, Davidson L. Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror. Physics of Fluids, 2018, 30(3): 036104 doi: 10.1063/1.5008611
    [21] Yao HD, Davidson L. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body. The Journal of the Acoustical Society of America, 2019, 145(5): 3163-3176 doi: 10.1121/1.5109548
    [22] Chode KK, Viswanathan H, Chow K. Noise emitted from a generic side-view mirror with different aspect ratios and inclinations. Physics of Fluids, 2021, 33(8): 084105 doi: 10.1063/5.0057166
    [23] Haruna S, Nouzawa T, Kamimoto I, et al. An experimental analysis and estimation of aerodynamic noise using a production vehicle. Physical Chemistry Chemical Physics Pccp, 1990, 13(35): 15899-15905
    [24] Buchheim R, Dobrzynski W, Mankau H, et al. Vehicle interior noise related to external aerodynamics. International Journal of Vehicle Design, 1982, 3(4): 398-410
    [25] Hoeld R, Brenneis A, Eberle A, et al. Numerical simulation of aeroacoustic sound generated by generic bodies placed on a plate. I - Prediction of aeroacoustic sources//American Institute of Aeronautics and Astronautics, Bellevue, WA, USA, 1999
    [26] Werner M, Würz W, Krämer E. Experimental investigations of tonal noise on a vehicle side mirror//Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2016, 132: 777-787
    [27] Zang TA, Dahlburg RB, Dahlburg JP. Direct and large-eddy simulations of threedimensional compressible Navier-Stokes turbulence. Physics of Fluids A: Fluid Dynamics, 1992, 4(1): 127-140 doi: 10.1063/1.858491
    [28] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 1999, 62(3): 183-200 doi: 10.1023/A:1009995426001
    [29] Van Driest ER. On turbulent flow near a wall. Journal of the Aeronautical Sciences, 1956, 23(11): 1007-1011 doi: 10.2514/8.3713
    [30] Zhu L, Wu T, He G. Large-eddy simulation for the aero-vibro-acoustic analysis: plate-cavity system excited by turbulent channel flow. Acta Mechanica Sinica, 2022, 38(10): 322019 doi: 10.1007/s10409-022-22019-8
    [31] Salze E, Bailly C, Marsden O, et al. An experimental characterisation of wall pressure wavevector-frequency spectra in the presence of pressure gradients//American Institute of Aeronautics and Astronautics, Atlanta, GA, USA, 2014
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  54
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 录用日期:  2023-07-17
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2023-09-18

目录

    /

    返回文章
    返回