CHARACTERISTICS OF WALL PRESSURE FLUCTUATIONS FOR A BOUNDARY LAYER AFFECTED BY FLOW OVER AN IDEAL SIDE MIRROR
-
摘要: 钝体绕流引起的壁面压力脉动是气动/振动噪声的主要激励源. 钝体绕流引起的流动较为复杂, 无法直接采用基于平板边界层的模型直接模化壁面压力. 因此, 分析钝体绕流影响下的壁面压力在水下潜航器、汽车以及飞行器的自噪声和辐射噪声预测中具有重要意义. 文章以理想汽车后视镜绕流为例, 采用大涡模拟方法结合不同的亚格子湍流模型, 开展了后视镜下游壁面压力脉动时空性质的数值研究. 数值模拟中, 壁面压力相关统计量如压力系数和频率谱与文献中的数值和实验结果均相符. 藉由不同的相速度, 在时空能谱中分离了壁面压力脉动的3个特征流动: 对流、回流和声传播. 后视镜下游壁面压力脉动的空间谱, 相比于平板边界层, 出现等值线形状弯曲的现象. 通过基于泰勒冻结假设的统计分析, 得到了壁面压力脉动对流速度的空间分布. 根据对流速度, 壁面压力脉动在物理空间上可以分为: 回流区、稳定对流区和过渡区. 稳定对流区的壁面压力脉动的空间谱未出现弯曲现象, 而其空间关联半衰长度与频率倒数成正比, 表现出了经典平板边界层理论中的定量特性. 该工作表明, 钝体绕流使得边界层壁面压力传播方向发生偏转, 而壁面压力脉动在偏转后的稳定对流区依然保有平板边界层中的时空统计特性.Abstract: In low Mach number flows, wall pressure fluctuations induced by flows over a blunt body are the dominant source of aero- and vibroacoustic noise. Due to the complexity of flow patterns, their characteristics cannot be straightforwardly modeled with wall pressure models furnished by turbulent boundary layers (TBL). Therefore, studies on the flow over a blunt body and induced wall pressure play an essential role in predicting self- and radiated noises of underwater, automotive, and aerial vehicles. In this work, we employ large-eddy simulations (LES) with different sub-grid-scale (SGS) models to numerically investigate the flow over a generic side mirror of an automobile and space-time characteristics of the resulting wall pressure fluctuation. The statistical results from LES with both SGS models, including the pressure coefficient and frequency spectra, align well with published numerical and experimental results. In the spectral analysis, the downstream wall pressure fluctuation on the window is decomposed into three regimes in the wavenumber-frequency space via phase speed, including convection, recirculation, and acoustics. We observe that contours in the wavenumber spectrum of wall pressure in this work exhibit a bending effect compared to those in zero-pressure-gradient flat-plate TBLs. Based on the statistical analysis based on Taylor's hypothesis, we obtain the spatial distribution of the convection speed of wall pressure, which leads to three regions in physical space: recirculation, steady convection, and transition. The contours in the wavenumber spectra of wall pressure extracted from the steady convection region are free of bending effects. Moreover, the half-width of the spatial correlation function is proportional to the inverse of the corresponding frequency, which follows the attribute in the classical theory of TBL. This investigation indicates that the convection of wall pressure beneath a TBL deflects off the blunt body, while downstream wall pressure fluctuations in the steady-convection zone preserve the space-time characteristics of the TBL.
-
Key words:
- blunt body /
- boundary layer /
- wall pressure /
- large-eddy simulation
-
图 4 无量纲壁面压力脉动单边功率谱密度$\psi_{\rm{pp}}/(0.25\rho_\infty^2 U_\infty^3 D_{\rm{mr}})$. 实线为本文大涡模拟结果(WALE和SMA), 红色圆圈是实验结果[25], 三角和方块为文献中的数值结果[19-20]
Figure 4. Dimensionless PSD of wall pressure fluctuation $\psi_{\rm{pp}}/(0.25\rho_\infty^2 U_\infty^3 D_{\rm{mr}})$. Solid line (WALE and SMA in present work), red circles (experimental reference[25]), and triangles and squares (numerical reference[19-20])
图 7 玻璃窗口内无量纲壁面压力时空能谱(对流方向). 虚线对应的特征速度分别为: 红色($ \pm c_\infty+u_\infty $)、绿色($ u_\infty $)、紫色($ 0.3 u_\infty $)、黑色($ -0.15 u_\infty $)和蓝色($ -0.675 u_\infty $)
Figure 7. Wall pressure wavenumber-frequency spectrum $ \chi_C $. Phase speeds denoted by dashed lines are: red ($ \pm c_\infty+u_\infty $), green ($ u_\infty $), purple ($ 0.3 u_\infty $), black ($ -0.15 u_\infty $), and blue ($ -0.675 u_\infty $)
表 1 后视镜表面探测点坐标:S1 ~ S10 (坐标原点为后视镜底面前缘, 单位: m)
Table 1. Coordinates of pressure sensors: S1 ~ S10 (the origin of coordinate system rests in the front of the mirror's bottom, unit: m)
Coordinate S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 x 0.094 0 0.074 0 0.000 0 0.000 0 0.074 2 0.100 0 0.100 0 0.100 0 0.200 0 0.498 0 y 0.225 8 0.296 6 0.200 0 0.033 4 0.133 4 0.150 0 0.250 0 0.117 0 0.000 0 0.000 0 z −0.099 8 0.000 0 0.000 0 0.000 0 −0.096 6 −0.085 0 0.000 0 0.085 0 0.000 0 −0.142 0 表 2 后视镜表面探测点的时均压力系数:S1 ~ S7
Table 2. Time-averaged pressure coefficients at various locations on the side mirror: S1 ~ S7
Probes S1 S2 S3 S4 S5 S6 S7 experiment[25] −0.629 −0.725 0.886 0.991 −0.753 −0.507 −0.484 C-LES[20] −0.457 −0.592 0.879 0.991 −0.557 −0.498 −0.512 C-LES[21] −0.537 0.892 −0.925 −0.451 I-LES[19] −0.727 −0.898 0.898 0.1 −1.102 −0.477 −0.443 WALE (Eq.(7)) −0.718 −0.884 0.912 1.011 −1.105 −0.521 −0.496 SMA (Eq.(5)) −0.617 −0.911 0.920 1.023 −1.011 −0.556 −0.516 -
[1] Blake WK. Mechanics of Flow-Induced Sound and Vibration. Academic Press, 2017 [2] Glegg S, Devenport W. Aeroacoustics of Low Mach Number Flows. Academic Press, 2017 [3] Wilby JF. Aircraft interior noise. Journal of Sound and Vibration, 1996, 190(3): 545-564 doi: 10.1006/jsvi.1996.0078 [4] Howard CQ. Recent developments in submarine vibration isolation and noise control//Proceedings of the 1st Submarine Science Technology and Engineering Conference. Australia, 2011: 8 [5] Maxit L, Guasch O, Meyer V, et al. Noise radiated from a periodically stiffened cylindrical shell excited by a turbulent boundary layer. Journal of Sound and Vibration, 2020, 466: 115016 doi: 10.1016/j.jsv.2019.115016 [6] Culla A, DffAmbrogio W, Fregolent A, et al. Vibroacoustic optimization using a statistical energy analysis model. Journal of Sound and Vibration, 2016, 375: 102-114 doi: 10.1016/j.jsv.2016.04.026 [7] Deng T, Sheng X, Jeong H, et al. A twoand-half dimensional finite element/boundary element model for predicting the vibro-acoustic behaviour of panels with poro-elastic media. Journal of Sound and Vibration, 2021, 505: 116147 doi: 10.1016/j.jsv.2021.116147 [8] 陈增涛, 王发杰, 王超. 广义有限差分法在含阻抗边界空腔声学分析中的应用. 力学学报, 2021, 53(4): 1183-1195 (Chen Zengtao, Wang Fajie, Wang Chao. Application of generalized finite difference method in acoustic analysis of cavity with impedance boundary. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1183-1195 (in Chinese) doi: 10.6052/0459-1879-20-311Chen Zengtao, Wang Fajie, Wang Chao. Application of generalized finite difference method in acoustic analysis of cavity with impedance boundary. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1183-1195 (in Chinese) doi: 10.6052/0459-1879-20-311 [9] Abshagen J, Nejedl V. Towed body measurements of flow noise from a turbulent boundary layer under sea conditions. The Journal of the Acoustical Society of America, 2014, 135(2): 637-645 doi: 10.1121/1.4861238 [10] Hubbard HH. Aeroacoustics of flight vehicles: Theory and practice. Noise Control. Volume 2. NASA, 1991. NASA-RP-1258-VOL-2. [11] Wu T, He G. Space-time energy spectra in turbulent shear flows. Physical Review Fluids, 2021, 6(10): 100504 doi: 10.1103/PhysRevFluids.6.100504 [12] Miller TS, Gallman JM, Moeller MJ. Review of turbulent boundary layer models for acoustic analysis. Journal of Aircraft, 2012, 49(6): 1739-1754 doi: 10.2514/1.C031405 [13] Corcos GM. The structure of the turbulent pressure field in boundary-layer flows. Journal of Fluid Mechanics, 1964, 18(3): 353-378 doi: 10.1017/S002211206400026X [14] Graham WR. Boundary layer induced noise in aircraft. Part I: The flat plate model. Journal of Sound and Vibration, 1996, 192(1): 101-120 doi: 10.1006/jsvi.1996.0178 [15] Mazzeo G, Ichchou M, Petrone G, et al. Pseudo-equivalent deterministic excitation method application for experimental reproduction of a structural response to a turbulent boundary layer excitation. The Journal of the Acoustical Society of America, 2022, 152(3): 1498-1514 [16] 邱翔, 吴昊东, 陶亦舟等. 近壁面圆柱绕流中尾流结构演化特性的实验研究. 力学学报, 2022, 54(11): 3042-3057 (Qiu Xiang, Wu Haodong, Tao Yizhou, et al. Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057 (in Chinese) doi: 10.6052/0459-1879-22-403Qiu Xiang, Wu Haodong, Tao Yizhou, et al. Experimental study on evolution of wake structures in flow past the circular cylinder placed near the wall. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057 (in Chinese) doi: 10.6052/0459-1879-22-403 [17] 李曌斌, 董国丹, 秦建华等. 浮式风力机运动形式对尾迹大尺度运动的影响. 空气动力学学报, 2022, 40(4): 231-239 (Li Zhaobin, Dong Guodan, Qin Jianhua, et al. Coherent flow structures in the wake of floating wind turbines induced by motions in different degrees of freedom. Acta Aerodynamica Sinica, 2022, 40(4): 231-239 (in Chinese) doi: 10.7638/kqdlxxb-2022.0057Li Zhaobin, Dong Guodan, Qin Jianhua, et al. Coherent flow structures in the wake of floating wind turbines induced by motions in different degrees of freedom. Acta Aerodynamica Sinica, 2022, 40(4): 231-239 (in Chinese) doi: 10.7638/kqdlxxb-2022.0057 [18] Zhou Z, Li Z, Yang X, et al. Investigation of the wake characteristics of an underwater vehicle with and without a propeller. Ocean Engineering, 2022, 266: 113107 doi: 10.1016/j.oceaneng.2022.113107 [19] Ask J, Davidson L. The sub-critical flow past a generic side mirror and its impact on sound generation and propagation//12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). American Institute of Aeronautics and Astronautics, 2006 [20] Yao HD, Davidson L. Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror. Physics of Fluids, 2018, 30(3): 036104 doi: 10.1063/1.5008611 [21] Yao HD, Davidson L. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body. The Journal of the Acoustical Society of America, 2019, 145(5): 3163-3176 doi: 10.1121/1.5109548 [22] Chode KK, Viswanathan H, Chow K. Noise emitted from a generic side-view mirror with different aspect ratios and inclinations. Physics of Fluids, 2021, 33(8): 084105 doi: 10.1063/5.0057166 [23] Haruna S, Nouzawa T, Kamimoto I, et al. An experimental analysis and estimation of aerodynamic noise using a production vehicle. Physical Chemistry Chemical Physics Pccp, 1990, 13(35): 15899-15905 [24] Buchheim R, Dobrzynski W, Mankau H, et al. Vehicle interior noise related to external aerodynamics. International Journal of Vehicle Design, 1982, 3(4): 398-410 [25] Hoeld R, Brenneis A, Eberle A, et al. Numerical simulation of aeroacoustic sound generated by generic bodies placed on a plate. I - Prediction of aeroacoustic sources//American Institute of Aeronautics and Astronautics, Bellevue, WA, USA, 1999 [26] Werner M, Würz W, Krämer E. Experimental investigations of tonal noise on a vehicle side mirror//Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2016, 132: 777-787 [27] Zang TA, Dahlburg RB, Dahlburg JP. Direct and large-eddy simulations of threedimensional compressible Navier-Stokes turbulence. Physics of Fluids A: Fluid Dynamics, 1992, 4(1): 127-140 doi: 10.1063/1.858491 [28] Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 1999, 62(3): 183-200 doi: 10.1023/A:1009995426001 [29] Van Driest ER. On turbulent flow near a wall. Journal of the Aeronautical Sciences, 1956, 23(11): 1007-1011 doi: 10.2514/8.3713 [30] Zhu L, Wu T, He G. Large-eddy simulation for the aero-vibro-acoustic analysis: plate-cavity system excited by turbulent channel flow. Acta Mechanica Sinica, 2022, 38(10): 322019 doi: 10.1007/s10409-022-22019-8 [31] Salze E, Bailly C, Marsden O, et al. An experimental characterisation of wall pressure wavevector-frequency spectra in the presence of pressure gradients//American Institute of Aeronautics and Astronautics, Atlanta, GA, USA, 2014 -