[1] |
沈青. 稀薄气体动力学. 北京: 国防工业出版社, 2003Shen Ching. Rarefied Gas Dynamics. Berlin: Springer-Verlag, 2005 (in Chinese)
|
[2] |
Kosuge S, Kuo H, Aoki K. A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. Journal of Statistical Physics, 2019, 177(2): 209-251 doi: 10.1007/s10955-019-02366-5
|
[3] |
Taniguchi S, Arima T, Ruggeri T, et al. Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Physical Review E, 2014, 89(1): 013025 doi: 10.1103/PhysRevE.89.013025
|
[4] |
Mostafavi P, Zank GP. The structure of shocks in the very local interstellar medium. Astrophysical Journal Letters, 2018, 854(1): L15 doi: 10.3847/2041-8213/aaab54
|
[5] |
Shanmugasundaram V, Murty SSR. Structure of shock waves at re-entry speeds. Journal of Plasma Physics, 1980, 23(1): 43-70 doi: 10.1017/S0022377800022157
|
[6] |
Chikitkin AV, Rogov BV, Tirsky GA, et al. Effect of bulk viscosity in supersonic flow past spacecraft. Applied Numerical Mathematics, 2015, 93: 47-60 doi: 10.1016/j.apnum.2014.01.004
|
[7] |
Timokhin MY, Tikhonov M, Mursenkova IV, et al. Shock-wave thickness influence to the light diffraction on a plane shock wave. Physics of Fluids, 2020, 32(11): 116103 doi: 10.1063/5.0029612
|
[8] |
Bondorf J, Ivanov YB, Zimanyi J. Structure of a shock front in nuclear matter. Physica Scripta, 1981, 24(3): 514-518 doi: 10.1088/0031-8949/24/3/005
|
[9] |
Alsmeyer H. Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. Journal of Fluid Mechanics, 1976, 74(3): 497-513 doi: 10.1017/S0022112076001912
|
[10] |
Pham-Van-Diep GC, Ervin DA, Muntz EP. Nonequilibrium molecular motion in a hypersonic shock wave. Science, 1989, 245(4918): 624-626 doi: 10.1126/science.245.4918.624
|
[11] |
Greenshields CJ, Reese JM. The structure of shock waves as a test of Brenner’s modifications to the Navier-Stokes equations. Journal of Fluid Mechanics, 2007, 580: 407-429 doi: 10.1017/S0022112007005575
|
[12] |
Xu K, Huang J. A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 2010, 229(20): 7747-7764 doi: 10.1016/j.jcp.2010.06.032
|
[13] |
Jadhav RS, Agrawal A. Strong shock as a stringent test for Onsager-Burnett equations. Physical Review E, 2020, 102(6): 063111 doi: 10.1103/PhysRevE.102.063111
|
[14] |
Cai Z. Moment method as a numerical solver: challenge from shock structure problems. Journal of Computational Physics, 2021, 444: 110593 doi: 10.1016/j.jcp.2021.110593
|
[15] |
Becker R. Stoßwelle und detonation. Zeitschrift für Physik, 1922, 8(1): 321-362
|
[16] |
Myong RS. Analytical solutions of shock structure thickness and asymmetry in Navier-Stokes/Fourier framework. AIAA Journal, 2014, 52(5): 1075-1080 doi: 10.2514/1.J052583
|
[17] |
Uribe FJ, Velasco RM. Exact solutions for shock waves in dilute gases. Physical Review E, 2019, 100(2): 023118 doi: 10.1103/PhysRevE.100.023118
|
[18] |
Patel A, Singh M. Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity. Shock Waves, 2019, 29(3): 427-439 doi: 10.1007/s00193-018-0855-8
|
[19] |
Mott-Smith HM. The solution of the Boltzmann equation for a shock wave. Physical Review, 1951, 82(6): 885-892 doi: 10.1103/PhysRev.82.885
|
[20] |
Valentini P, Schwartzentruber TE. Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Physics of Fluids, 2009, 21(6): 066101 doi: 10.1063/1.3149866
|
[21] |
沈青, 胡振华, 徐晓燕等. 正激波结构与反射的蒙特卡罗模拟. 空气动力学学报, 1991, 9(4): 435-441 (Shen Qing, Hu Zhenhua, Xu Xiaoyan, et al. Monte Carlo simulation of the structure and reflection of normal shock waves. Acta Aerodynamica Sinica, 1991, 9(4): 435-441 (in Chinese)Shen Qing, Hu Zhenhua, Xu Xiaoyan, et al. Monte Carlo simulation of the structure and reflection of normal shock waves. Acta Aerodynamica Sinica, 1991, 9(4): 435-441 (in Chinese)
|
[22] |
Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. New York: Oxford University Press, 1994
|
[23] |
Hicks BL, Yen S, Reilly BJ. The internal structure of shock waves. Journal of Fluid Mechanics, 1972, 53(1): 85-111 doi: 10.1017/S0022112072000059
|
[24] |
Ohwada T. Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Physics of Fluids, 1993, 5(1): 217-234 doi: 10.1063/1.858777
|
[25] |
李志辉, 张涵信. 激波结构内流动问题的气体运动论描述. 空气动力学学报, 2007, 25(4): 411-418 (Li Zhihui, Zhang Hanxin. Gas-kinetic description of shock wave structures by solving Boltzmann model equation. Acta Aerodynamica Sinica, 2007, 25(4): 411-418 (in Chinese)Li Zhihui, Zhang Hanxin. Gas-kinetic description of shock wave structures by solving Boltzmann model equation. Acta Aerodynamica Sinica, 2007, 25(4): 411-418 (in Chinese)
|
[26] |
Xu K, Tang L. Nonequilibrium Bhatnagar-Gross-Krook model for nitrogen shock structure. Physics of Fluids, 2004, 16(10): 3824-3827 doi: 10.1063/1.1783372
|
[27] |
Inamuro T, Sturtevant B. Numerical study of discrete-velocity gases. Physics of Fluids, 1990, 2(12): 2196-2203 doi: 10.1063/1.857825
|
[28] |
Morris AB, Varghese PL, Goldstein DB. Monte Carlo solution of the Boltzmann equation via a discrete velocity model. Journal of Computational Physics, 2011, 230(4): 1265-1280 doi: 10.1016/j.jcp.2010.10.037
|
[29] |
Uribe FJ, Velasco RM. Shock-wave structure based on the Navier-Stokes-Fourier equations. Physical Review E, 2018, 97(4): 043117 doi: 10.1103/PhysRevE.97.043117
|
[30] |
李馨东, 赵英奎, 胡宗民等. 基于第二黏性的Navier-Stokes方程组求解正激波结构. 计算物理, 2020, 37(5): 505-513 (Li Xindong, Zhao Yingkui, Hu Zongmin, et al. Investigation of normal shock structure by using Navier-Stokes equations with the second viscosity. Chinese Journal of Computational Physics, 2020, 37(5): 505-513 (in Chinese) doi: 10.19596/j.cnki.1001-246x.8121Li Xindong, Zhao Yingkui, Hu Zongmin, et al. Investigation of normal shock structure by using Navier-Stokes equations with the second viscosity. Chinese Journal of Computational Physics, 2020, 37(5): 505-513 (in Chinese) doi: 10.19596/j.cnki.1001-246x.8121
|
[31] |
García-Colín LS, Velasco RM, Uribe FJ. Beyond the Navier-Stokes equations: Burnett hydrodynamics. Physics Reports, 2008, 465(4): 149-189 doi: 10.1016/j.physrep.2008.04.010
|
[32] |
赵文文. 高超声速流动Burnett方程稳定性与数值计算方法研究. [博士论文]. 杭州: 浙江大学, 2014Zhao Wenwen. Linearized stability analysis and numerical computation of Burnett equations in hypersonic flow. [PhD Thesis]. Hangzhou: Zhejiang University, 2014 (in Chinese)
|
[33] |
Torrilhon M. Modeling nonequilibrium gas flow based on moment equations. Annual Review of Fluid Mechanics, 2016, 48: 429-458 doi: 10.1146/annurev-fluid-122414-034259
|
[34] |
Al-Ghoul M, Eu BC. Generalized hydrodynamics and shock waves. Physical Review E, 1997, 56(3): 2981-2992 doi: 10.1103/PhysRevE.56.2981
|
[35] |
Jiang Z, Zhao W, Chen W, et al. Computation of shock wave structure using a simpler set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations. Shock Waves, 2019, 29(8): 1227-1239 doi: 10.1007/s00193-018-0876-3
|
[36] |
Chapman S, Cowling TG. The Mathematical Theory of Non-Uniform Gases, 3rd ed. Cambridge: Cambridge University Press, 1970
|
[37] |
Gorban AN. Hilbert’s sixth problem: the endless road to rigour. Philosophical Transactions of the Royal Society A, 2018, 376(2118): 20170238 doi: 10.1098/rsta.2017.0238
|
[38] |
Elizarova TG, Khokhlov AA, Montero S. Numerical simulation of shock wave structure in nitrogen. Physics of Fluids, 2007, 19(6): 068102 doi: 10.1063/1.2738606
|
[39] |
Taylor GI. The conditions necessary for discontinuous motion in gases. Proceedings of the Royal Society of London Series A, 1910, 84(571): 371-377
|