ANALYSIS OF CARANGIFORM UNDULATION BASED ON VIRTUAL POWER PRINCIPLE
-
摘要: 自然界中的大多数鱼类通过波状摆动的方式实现推进, 这是动态变形的鱼体和周围流体相互作用的结果, 研究推进中流体对鱼体变形的响应不仅可以增强对波状推进的认识, 还可以为流动控制提供依据. 以鲹科模式推进的仿生二维模型为研究对象, 通过数值计算获得鱼体波动产生的流场以及鱼体受到的流体力数据. 基于虚功率原理, 将鱼体受力分解为4部分, 分别是鱼体边界变速运动的瞬时贡献, 流场中流体旋转和应变速率相对大小的贡献, 壁面剪切应力的类摩阻分量和壁面摩阻分量. 结果表明, 当鱼体波状摆动产生推力时, 鱼体边界变速运动是主要的正推力来源, 并且该项80%的推力贡献来源于20%的鱼尾部分的边界变速运动. 鱼尾两侧边界层中的流体旋转和应变速率的相对大小和壁面摩阻对推力都是负贡献. 对于低雷诺数的情况, 流体旋转和应变速率的相对大小的负贡献低于壁面摩阻的负贡献, 而在高雷诺数的情况下, 流体旋转和应变速率的相对大小的负贡献强于壁面摩阻的负贡献. 壁面类摩阻分量相对于其他3项总是较小的. 结合标度律分析, 在摆动推进的标度关系中, 与雷诺数无关的推力部分是由边界的变速运动、流场中流体旋转和应变速率共同提供, 且流体旋转和应变速率也贡献了摆动推力中与雷诺数有关的部分, 而这一部分接近类摩阻和摩阻的一半, 同时, 类摩阻和摩阻还提供了常阻力分量.Abstract: Most fish in nature achieve propulsion through undulatory movements, which are the result of the interaction between the deforming fish body and the surrounding fluid. To study the response of the fluid can enhance our understanding of undulatory propulsion and flow control. A two-dimensional deforming airfoil is used to model the carangiform fish. The flow field generated by fish body and the fluid forces acting on the fish body were obtained by using computational fluid dynamics. Using the principle of virtual power, the thrust on the fish body was decomposed into four parts, which are the instantaneous contribution of the boundary acceleration, the contribution of the relative magnitude of fluid rotation and strain rate in the flow field, the wall friction-like component and the wall friction component. The results show that the instantaneous contribution of the boundary acceleration is the main source of positive thrust. The rear 80% of the thrust contribution of this term comes from the instantaneous boundary acceleration movement of the rear 20% of the fish body. The fluid rotation and strain rate in the boundary layer on both sides of the fish tail and the friction contribute to resistance. For low Reynolds number, the negative contribution of the relative magnitude of fluid rotation and strain rate is lower than that of wall friction, while for high Reynolds number, the negative contribution of the relative magnitude of fluid rotation and strain rate is stronger than that of wall friction. However, the wall friction-like component is always smaller compared to the other three terms. In the analysis of the scaling law of undulatory propulsion, it was found that there is a component independent of the Reynolds number which is provided by the first two parts, while the component that is dependent on the Reynolds number is provided by the last three parts. Furthermore, the frictional force and the friction-like force provide constant resistance.
-
Key words:
- virtual power principle /
- carangiform /
- undulatory propulsion /
- thrust decomposition
-
图 5
$t = 0T,t = 1/8T,t = 1/4T,t = 3/8T $ 时刻的涡量场(第1列)、Q分布图(第2列)、Q对推力的贡献分布图(第3列)和虚速度势场(第4列)Figure 5. Vorticity field (first column), Q distribution diagram (second column), Q distribution diagram of contribution to thrust (third column) and virtual velocity potential field
$\phi $ (fourth column) at$t = 0T,t = 1/8T,t = 1/4T,t = 3/8T $ 图 9 不同雷诺数
$Re$ 条件下$\left\langle {{C_{T,a}}} \right\rangle ,\left\langle {{C_{T,Q}}} \right\rangle ,\left\langle {{C_{T,v}}} \right\rangle 和\left\langle {{C_{T,f}}} \right\rangle$ 随运动参数$St$ 的变化规律Figure 9. The time-averaged thrust coefficient
$\left\langle {{C_{T,a}}} \right\rangle ,\left\langle {{C_{T,Q}}} \right\rangle ,\left\langle {{C_{T,v}}} \right\rangle ,\left\langle {{C_{T,f}}} \right\rangle $ as a function of$St$ at different Reynolds number图 10 不同雷诺数
$Re$ 条件下$\left\langle {{C_{T,a}}} \right\rangle ,\left\langle {{C_{T,Q}}} \right\rangle ,\left\langle {{C_{T,v}}} \right\rangle 和\left\langle {{C_{T,f}}} \right\rangle$ 的贡献堆叠柱状图Figure 10. Stacked histogram of the time-averaged thrust coefficient
$\left\langle {{C_{T,a}}} \right\rangle ,\left\langle {{C_{T,Q}}} \right\rangle ,\left\langle {{C_{T,v}}} \right\rangle ,\left\langle {{C_{T,f}}} \right\rangle $ at different Reynolds number图 11 在
$t = 0 T,t = 1/8 T,t = 1/4 T和t = 3/8 T$ 时刻以及不同摆幅条件下($A = 0.06,0.08,0.10,0.12和0.14$ ),$\Delta \phi (x)$ 以及$\Delta \phi (x)/A$ 沿着鱼体中线的分布Figure 11. Distribution of
$\Delta \phi (x)$ and$\Delta \phi (x)/A$ along the center line of fish at different time($ t = 0 T,t = 1/8 T,t = 1/4 T,t = 3/8 T $ ) and under different amplitude condition($A = 0.06,0.08,0.10,0.12,0.14$ ) -
[1] Sfakiotakis M, Lane DM, Davies JBC. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252 doi: 10.1109/48.757275 [2] Videler JJ. Fish Swimming. Berlin: Springer Science & Business Media, 1993 [3] Breder CM. The locomotion of fishes. Zoologica, 1926, 4: 159-297 [4] Hu QQ, Yu YL. The hydrodynamic effects of undulating patterns on propulsion and braking performances of long-based fin. AIP Advances, 2022, 12(3): 35319 doi: 10.1063/5.0083912 [5] Lighthill J. Mathematical Biofluiddynamics. Philadelphia: Society for Industrial and Applied Mathematics, 1975. [6] Lauder GV, Drucker EG. Forces, fishes, and fluids: hydrodynamic mechanisms of aquatic locomotion. Physiology, 2002, 17(6): 235-240 doi: 10.1152/nips.01398.2002 [7] Müller UK, Heuvel B, Stamhuis EJ, et al. Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). Journal of Experimental Biology, 1997, 200(22): 2893-2906 doi: 10.1242/jeb.200.22.2893 [8] Anderson JM. Vorticity control for efficient propulsion. Massachusetts Institute of Technology, 1996 [9] Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA. Optimal thrust development in oscillating foils with application to fish propulsion. Journal of Fluids and Structures, 1993, 7(2): 205-224 doi: 10.1006/jfls.1993.1012 [10] Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R. Wake mechanics for thrust generation in oscillating foils. Physics of Fluids A:Fluid Dynamics, 1991, 3(12): 2835-2837 doi: 10.1063/1.858173 [11] Anderson JM, Streitlien K, Barrett DS, et al. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics, 1998, 360: 41-72 doi: 10.1017/S0022112097008392 [12] Dong GJ, Lu XY. Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Physics of Fluids, 2007, 19(5): 057107 doi: 10.1063/1.2736083 [13] Deng J, Shao XM, Ren AL. Numerical study on propulsive performance of fish-like swimming foils. Journal of Hydrodynamics, 2006, 18(6): 681-687 doi: 10.1016/S1001-6058(07)60007-9 [14] Liu H, Wassersug R, Kawachi K. A computational fluid dynamics study of tadpole swimming. The Journal of Experimental Biology, 1996, 199(6): 1245-1260 doi: 10.1242/jeb.199.6.1245 [15] Yu YL, Huang KJ. Scaling law of fish undulatory propulsion. Physics of Fluids, 2021, 33(6): 061905 doi: 10.1063/5.0053721 [16] Gazzola M, Argentina M, Mahadevan L. Scaling macroscopic aquatic locomotion. Nature Physics, 2014, 10(10): 758-761 doi: 10.1038/nphys3078 [17] Thekkethil N, Sharma A, Agrawal A. Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow. Physics of Fluids, 2018, 30(7): 077107 doi: 10.1063/1.5041358 [18] Hu QQ, Yu YL. Hydrodynamic scaling law in undulatory braking locomotion. Science China Physics, Mechanics & Astronomy, 2021, 64(7): 274711 [19] Gupta S, Sharma A, Agrawal A, et al. Hydrodynamics of a fish-like body undulation mechanism: Scaling laws and regimes for vortex wake modes. Physics of Fluids, 2021, 33(10): 101904 doi: 10.1063/5.0062304 [20] 高天宇, 余永亮, 鲍麟. 鲹科模式鱼体自主前游的标度律研究. 力学学报, 2023, 55(4): 1-16 (Gao Tainyu, Yu Yongliang, Bao Lin. Study on the scaling law of fish-like body self-propulsion with carangiform undulation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 1-16 doi: 10.6052/0459-1879-22-599 [21] Wu J, Liu L, Liu T. Fundamental theories of aerodynamic force in viscous and compressible complex flows. Progress in Aerospace Sciences, 2018, 99: 27-63 doi: 10.1016/j.paerosci.2018.04.002 [22] Burgers J M. On the resistance of fluid and vortex motion. Proc K Akad Wet, 1920, 23: 774-782. [23] Lighthill J. An informal introduction to theoretical fluid mechanics. 1986. [24] Wu JC. Theory for aerodynamic force and moment in viscous flows. AIAA Journal, 1981, 19(4): 432-441 doi: 10.2514/3.50966 [25] Wu JZ, Pan ZL, Lu XY. Unsteady fluid-dynamic force solely in terms of control-surface integral. Physics of Fluids, 2005, 17(9): 1-4 [26] Quartapelle L, Napolitano M. Force and moment in incompressible flows. AIAA Journal, 1983, 21(6): 911-913 doi: 10.2514/3.8171 [27] Howe MS. On unsteady surface forces, and sound produced by the normal chopping of a rectilinear vortex. Journal of Fluid Mechanics, 1989, 206: 131-153 doi: 10.1017/S0022112089002259 [28] Chang CC. Potential flow and forces for incompressible viscous flow. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1992, 437(1901): 517-525 doi: 10.1098/rspa.1992.0077 [29] Yu YL. The virtual power principle in fluid mechanics. Journal of Fluid Mechanics, 2014, 744: 310-328 doi: 10.1017/jfm.2014.45 [30] Khalid MSU, Wang J, Dong HB, et al. Flow transitions and mapping for undulating swimmers. Physical Review Fluids, 2020, 5(6): 063104 doi: 10.1103/PhysRevFluids.5.063104 [31] Videler JJ, Hess F. Fast continuous swimming of two pelagic predators, saithe (pollachius virens ) and mackerel (scomber scombrus ): A kinematic analysis. Journal of Experimental Biology, 1984, 109(1): 209-228 doi: 10.1242/jeb.109.1.209 [32] Hunt JCR, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying turbulence using numerical simulation databases, 2//Proceedings of the 1988 summer program, 1988 [33] Gao AK, Zou SF, Shi Y, et al. Passing-over leading-edge vortex: The thrust booster in heaving airfoil. AIP Advances, 2019, 9(3): 035314 doi: 10.1063/1.5064696 [34] 徐涛涛, 胡文蓉. 鳞鲀倒游机动的机理研究. 水动力学研究与进展:A辑, 2022, 37(3): 277-283 (Xu Taotao, Hu Wenrong. Study on mechanism of balistid’s backward maneuvering. Chinese Journal of Hydrodynamics, 2022, 37(3): 277-283 (in Chinese) -