NUMERICAL SIMULATION OF MULTI-SCALE FRACTURED RESERVOIR BASED ON CONNECTION ELEMENT METHOD
-
摘要: 针对油藏不同尺度复杂几何特征描述和动态连通性识别等难题, 近年来发展了一种基于非欧物理连通网络具有无网格特征的油藏数值模拟连接元方法. 文章将连接元法推广到裂缝性油藏, 从流体流动的角度, 利用连接单元将油藏离散为物理连通网络; 根据节点物性参数、影响域半径和加权最小二乘法给出了压力扩散项的广义差分近似; 结合物质守恒方程计算节点控制体积、基质节点间传导率、裂缝节点间传导率以及基质节点与裂缝节点间传导率; 从而构建渗流控制方程组的全隐式离散格式, 求解压力、饱和度以及含水率等生产动态参数; 引入图论深度优先搜索算法, 基于每个时间步求解的节点间压力梯度, 计算各时间步注入井的劈分系数, 定量表征井节点间的流动关系和连通性. 算例验证表明, 相较基于网格体系的传统方法, 该方法能够自由灵活地刻画包括裂缝复杂分布、不规则油藏边界在内的复杂油藏几何, 在粗化模型情况下能够保留更丰富的流动拓扑结构, 实现计算精度和计算效率的更优平衡, 能更好满足实际大规模裂缝性油藏的生产动态模拟预测需求, 同时为具有多尺度几何特征的裂缝性油藏及复杂边界油藏的数值模拟提供了新思路.Abstract: In order to solve the complex geometric characteristics description and dynamic connectivity identification problems of reservoir at different scales, a new method of reservoir numerical simulation, connection element method (CEM), based on non-European physical connectivity network with meshless characteristics has been developed in recent years. In this paper, CEM is extended to fractured reservoirs. From the perspective of fluid flow, the reservoir is discretized into physical connected network by the connection element. The generalized difference approximation of the pressure diffusion term is given according to the physical parameters of the node, the radius of the influence domain and the weighted least square method. Meanwhile, the control volume of nodes, the transmissibility between matrix nodes, the transmissibility between fracture nodes, and the transmissibility between matrix nodes and fracture nodes were calculated based on the material conservation equation. Thus, a fully implicit discrete scheme of seepage control equations is constructed to solve dynamic production parameters such as pressure, saturation and water cut. Based on the pressure gradient between nodes solved by each time step, the allocation factors of injection wells at each time step were calculated by the depth-first search algorithm of graph theory to quantitatively characterize the flow relationship and connectivity between well nodes. The algorithm validation shows that the method can freely and flexibly portray complex reservoir geometry including distribution of complex fractures networks and irregular reservoir boundaries. Compared with the traditional grid-based method, this method can retain more abundant flow topologies under the condition of coarser model, so as to achieve a better balance between computational accuracy and computational efficiency. As a result, CEM can better meet the demand of production dynamic simulation and prediction of actual large-scale fractured reservoirs, and provides a new idea for numerical simulation of fractured reservoirs with multi-scale geometric characteristics and complex boundary reservoirs.
-
表 1 油藏物性参数
Table 1. Physical parameters
Parameter Value Parameter Value initial porosity 0.2 rock compressibility/MPa−1 6.5 × 10−5 initial pressure/MPa 25 irreducible water saturation 0.2 oil viscosity/mPa·s 2 fluid compressibility/Pa−1 5 × 10−4 water viscosity/Pa·s 1 fluid volume coefficient 1 fracture aperture/m 0.01 reservoir thickness/m 10 fracture permeability/mD 20000 -
[1] 邹才能, 朱如凯, 吴松涛等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例. 石油学报, 2012, 33(2): 173-187 (Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation: staking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 2012, 33(2): 173-187 (in Chinese) doi: 10.1038/aps.2011.203 [2] 吴奇, 胥云, 张守良等. 非常规油气藏体积改造技术核心理论与优化设计关键. 石油学报, 2014, 35(4): 706-714 (Wu Qi, Xu Yun, Zhang Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs. Acta Petrolei Sinica, 2014, 35(4): 706-714 (in Chinese) [3] 李然, 易新斌, 王天一等. 基于细观离散元方法的低渗透储层水力压裂数值模拟. 石油科学通报, 2022, 7(4): 576-583 (Li Ran, Yi Xinbin, Wang Tianyi, et al. Numerical simulation of hydraulic fracturing for low permeability reservoirs based on particle flow code-discrete element method. Petroleum Science Bulletin, 2022, 7(4): 576-583 doi: 10.3969/j.issn.2096-1693.2022.04.049 [4] 薛亮, 吴雨娟, 刘倩君等. 裂缝性油气藏数值模拟与自动历史拟合研究进展. 石油科学通报, 2019, 4(4): 335-346 (Xue Liang, Wu Yujuan, Liu Qianjun, et al. Advances in numerical simulation and automatic history matching of fractured reservoirs. Petroleum Science Bulletin, 2019, 4(4): 335-346 [5] Snow DT. Rock fracture spacings, openings and porosities. Journal of the Soil Mechanics & Foundations Division, 1968, 94(1): 73-92 [6] Warren JE, Root PJ. The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 1963, 3(3): 245-255 doi: 10.2118/426-PA [7] Pruess K, Narasimhan TN. Practical method for modeling fluid and heat flow in fractured porous media. Society of Petroleum Engineers Journal, 1985, 25(1): 14-26 doi: 10.2118/10509-PA [8] Gilman JR. An efficient finite-difference method for simulating phase segregation in the matrix blocks in double-porosity reservoirs. SPE Reservoir Engineering, 1986, 1(4): 403-413 doi: 10.2118/12271-PA [9] 张烈辉, 贾鸣, 张芮菡等. 裂缝性油藏离散裂缝网络模型与数值模拟. 西南石油大学学报(自然科学版), 2017, 39(3): 121-127 (Zhang Liehui, Jia Ming, Zhang Ruihan, et al. Discrete fracture network modeling and numerical simulation of fractured reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(3): 121-127 (in Chinese) [10] Slough KJ, Sudicky EA, Forsyth PA. Grid refinement for modeling multiphase flow in discretely fractured porous media. Advances in Water Resources, 1999, 23(3): 261-269 doi: 10.1016/S0309-1708(99)00009-3 [11] 邓英尔, 刘慈群, 王允诚. 考虑吸渗的双重介质中垂直裂缝井两相渗流. 重庆大学学报(自然科学版), 2000: 86-89 (Deng Yinger, Liu Ciqun, Wang Yuncheng. Two phase flow through double-porosity media with vertically fractured well working. Journal of Chongqing University (Natural Science Edition), 2000: 86-89 (in Chinese) [12] Karimi-fard M, Firoozabadi A. Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin method. SPE Reservoir Evaluation & Engineering, 2003, 6(2): 117-126 [13] 姚军, 王子胜, 张允等. 天然裂缝性油藏的离散裂缝网络数值模拟方法. 石油学报, 2010, 31(2): 284-288 (Yao Jun, Wang Zisheng, Zhang Yun, et al. Numerical simulation method of discrete fracture network for naturally fractured reservoirs. Acta Petrolei Sinica, 2010, 31(2): 284-288 (in Chinese) [14] 邓英豪, 夏阳, 金衍. 基于扩展有限元的离散缝网渗流数值模拟方法. 石油学报, 2022, 43(10): 1474-1486 (Deng Yinghao, Xia Yang, Jin Yan. Numerical simulation method of discrete fracture network flow based on the extended finite element method. Acta Petrolei Sinica, 2022, 43(10): 1474-1486 (in Chinese) [15] Monteagudo JE, Forsyth PA. Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐and three‐dimensional discrete‐fractured media. Water Resources Research, 2004, 40(7). [16] 袁迎中, 向祖平, 戚志林等. 基于PEBI网格的离散裂缝油藏数值模拟研究. 水动力学研究与进展, 2016, 31(3): 379-386 (Yuan Yingzhong, Xiang Zuping, Qi Zhilin, et al. Numerical simulation research of discrete fracture reservoir based on PEBI grid. Journal of Hydrodynamics, 2016, 31(3): 379-386 (in Chinese) [17] 唐潮, 陈小凡, 杜志敏等. 基于有限体积法的裂缝性油藏两相流动模型. 石油学报, 2018, 39(8): 924-936 (Tang Chao, Chen Xiaofan, Du Zhimin, et al. Fractured reservoir two phase flow model based on finite volume method. Acta Petrolei Sinica, 2018, 39(8): 924-936 (in Chinese) doi: 10.7623/syxb201808008 [18] 程林松, 杜旭林, 饶翔等. 两套节点格林元嵌入式离散裂缝模型数值模拟方法. 力学学报, 2022, 54(10): 2892-2903 (Cheng Linsong, Du Xulin, Rao Xiang, et al. A numerical simulation approach for embedded discrete fracture model coupled Green element method based on two sets of nodes. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2892-2903 [19] Fu ZJ, Li AL, Zhang C, et al. A localized meshless collocation method for bandgap calculation of anti-plane waves in 2 D solid phononic crystals. Engineering Analysis with Boundary Elements, 2020, 119: 162-182 doi: 10.1016/j.enganabound.2020.07.014 [20] Rao X, Liu Y, Zhao H. An upwind generalized finite difference method for meshless solution of two-phase porous flow equations. Engineering Analysis with Boundary Elements, 2022, 137: 105-118 doi: 10.1016/j.enganabound.2022.01.013 [21] Zhan W, Rao X, Zhao H, et al. Generalized finite difference method (GFDM) based analysis for subsurface flow problems in anisotropic formation. Engineering Analysis with Boundary Elements, 2022, 140: 48-58 doi: 10.1016/j.enganabound.2022.04.008 [22] Gu Y, Sun HG. A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives. Applied Mathematical Modelling, 2020, 78: 539-549 doi: 10.1016/j.apm.2019.09.055 [23] 张雄, 胡炜, 潘小飞等. 加权最小二乘无网格法. 力学学报, 2003, 35(4): 425-431 (Zhang Xiong, Hu Wei, Pan Xiaofei. Meshless weighted least-square method. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(4): 425-431 (in Chinese) [24] Benito JJ, Urena F, Gavete L. Influence of several factors in the generalized finite difference method. Applied Mathematical Modelling, 2001, 25(12): 1039-1053 doi: 10.1016/S0307-904X(01)00029-4 [25] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256 doi: 10.1002/nme.1620370205 [26] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389 doi: 10.1093/mnras/181.3.375 [27] Zhuang X, Augarde CE, Mathisen KM. Fracture modeling using meshless methods and level sets in 3 D: framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969-998 doi: 10.1002/nme.4365 [28] Rao X, Zhao H, Liu Y. A meshless numerical modeling method for fractured reservoirs based on extended finite volume method. SPE Journal, 2022, 27(6): 3525-3564 doi: 10.2118/210581-PA [29] Zhao H, Kang Z, Zhang X, et al. A physics-based data-driven numerical model for reservoir history matching and prediction with a field application. SPE Journal, 2016, 21(6): 2175-2194 doi: 10.2118/173213-PA [30] Guo Z, Reynolds AC, Zhao H. Waterflooding optimization with the INSIM-FT data-driven model. Computational Geosciences, 2018, 22: 745-761 doi: 10.1007/s10596-018-9723-y [31] Zhao H, Xu L, Guo Z, et al. Flow-path tracking strategy in a data-driven interwell numerical simulation model for waterflooding history matching and performance prediction with infill wells. SPE Journal, 2020, 25(2): 1007-1025 doi: 10.2118/199361-PA [32] Li Y, Onur M. INSIM-BHP: A physics-based data-driven reservoir model for history matching and forecasting with bottomhole pressure and production rate data under waterflooding. Journal of Computational Physics, 2023, 473: 111714 doi: 10.1016/j.jcp.2022.111714 [33] 赵辉, 康志江, 张允等. 表征井间地层参数及油水动态的连通性计算方法. 石油学报, 2014, 35(5): 922-927 (Zhao Hui, Kang Zhijiang, Zhang Yun, et al. An interwell conneetivity numerical method for geological parameter characterization and oilwater twophase dynamic prediction. Acta Petrolei Sinica, 2014, 35(5): 922-927 (in Chinese) doi: 10.7623/syxb201405012 [34] 赵辉, 刘伟, 饶翔等. 油藏数值模拟连接元计算方法. 中国科学:技术科学, 2022, 52(12): 1869-1886 (Zhao Hui, Liu Wei, Rao Xiang, et al. Connection element method for reservoir numerical simulation. Scientia Sinica Technologica, 2022, 52(12): 1869-1886 (in Chinese) [35] Rao X, Zhao H, Liu Y. A novel meshless method based on the virtual construction of node control domains for porous flow problems. Engineering with Computers, 2023, 39(1): 1-41. [36] Moinfar A, Varavei A, Sepehrnoori K, et al. Development of an efficient embedded discrete fracture model for 3 D compositional reservoir simulation in fractured reservoirs. SPE Journal, 2014, 19(2): 289-303 doi: 10.2118/154246-PA -