EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分子−自抛光漆复合涂层减阻特性实验研究

刘浩 谢络 姚博仁 孙孟舸 胡海豹

刘浩, 谢络, 姚博仁, 孙孟舸, 胡海豹. 高分子−自抛光漆复合涂层减阻特性实验研究. 力学学报, 2023, 55(7): 1-8 doi: 10.6052/0459-1879-23-049
引用本文: 刘浩, 谢络, 姚博仁, 孙孟舸, 胡海豹. 高分子−自抛光漆复合涂层减阻特性实验研究. 力学学报, 2023, 55(7): 1-8 doi: 10.6052/0459-1879-23-049
Liu Hao, Xie Luo, Yao Boren, Sun Mengge, Hu Haibao. Experimental study on drag reduction characteristics of polymer-self-polishing paint composite coating. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1-8 doi: 10.6052/0459-1879-23-049
Citation: Liu Hao, Xie Luo, Yao Boren, Sun Mengge, Hu Haibao. Experimental study on drag reduction characteristics of polymer-self-polishing paint composite coating. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1-8 doi: 10.6052/0459-1879-23-049

高分子−自抛光漆复合涂层减阻特性实验研究

doi: 10.6052/0459-1879-23-049
基金项目: 国家自然科学基金(12102358, 52071272), 中央高校基本科研业务费专项资金(3102021HHZY030008), 中国博士后科学基金(2021M692617), 重庆市自然科学基金(cstc2021jcyj-msxmX0393)和陕西省科学技术协会青年人才托举计划(20220512)资助项目
详细信息
    通讯作者:

    谢络, 副教授, 主要研究方向: 水下仿生减阻. E-mail: xieluo@nwpu.edu.cn

  • 中图分类号: O357.5 + 4

EXPERIMENTAL STUDY ON DRAG REDUCTION CHARACTERISTICS OF POLYMER-SELF-POLISHING PAINT COMPOSITE COATING

  • 摘要: 基于减阻涂层易工程应用的优势和高聚物优异的湍流减阻性能, 研发复合高聚物减阻涂层, 在船舶及水下航行器领域应用前景将非常广阔, 而目前这方面的研究仍相对缺乏. 为此, 本文基于PAM和PEO减阻剂制备国产自抛光漆复合涂层, 通过水下平板阻力测试实验系统研究了涂层种类、主流流速、PAM/PEO浓度对减阻的影响规律, 并对复合涂层表面粗糙度进行分析. 结果表明: 高分子−自抛光漆复合涂层具有减阻效果, 采用单面减阻涂层最大实现9.4%的减阻; 流速在0.5 ~ 1.8 m/s变化时不会显著改变减阻率, 减阻率变化不超过3.5%; 随着涂层中高聚物浓度的增大, 自抛光漆−PAM涂层减阻率先增大后减小, 自抛光漆−PEO涂层减阻率先保持平稳后迅速下降; 当涂层中高聚物浓度超过某一临界值时都出现了减阻率下降甚至增阻现象, 其原因为涂层表面粗糙度增大及溶液黏度变化. 本工作可为高聚物减阻涂层的工程化应用提供参考.

     

  • 图  1  水下平板阻力测试实验系统

    Figure  1.  Underwater plate resistance test experimental system

    图  2  自抛光漆−PAM涂层

    Figure  2.  Self-polishing paint-PAM coating

    图  3  流速为0.8 m/s时涂层种类对减阻率的影响

    Figure  3.  Effect of coating type on DR when the flow velocity is 0.8 m/s

    图  4  流速对减阻率的影响

    Figure  4.  Effect of flow velocity on DR

    图  5  PAM/PEO浓度对减阻率的影响

    Figure  5.  Effect of PAM/PEO concentration on DR

    图  6  流速为0.8 m/s时PAM/PEO涂层在不同浓度下减阻率对比

    Figure  6.  DR of PAM/PEO coatings versus different concentrations when the flow velocity is 0.8 m/s

    图  7  PAM涂层表面粗糙度变化曲线

    Figure  7.  Surface roughness variation curves of PAM coating

    图  8  PEO涂层表面粗糙度变化曲线

    Figure  8.  Surface roughness variation curves of PEO coating

  • [1] Hu H, Wen J, Bao L, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. Science Advances, 2017, 3(9): 1-9
    [2] 冯家兴, 胡海豹, 卢丙举等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020, 52(1): 24-30 (Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30 (in Chinese)
    [3] 崔光耀, 潘翀, 高琪等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017, 49(6): 1201-1212 (Cui Guangyao, Pan Chong, Gao Qi, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212 (in Chinese)
    [4] Chung J, Cho Y. Ventilated supercavitation around a moving body in a still fluid: observation and drag measurement. Journal of Fluid Mechanics, 2018, 854: 367-419 doi: 10.1017/jfm.2018.638
    [5] 宋武超, 王聪, 魏英杰等. 微气泡与聚合物对水下航行体减阻特性影响试验研究. 兵工学报, 2018, 39(6): 1151-1158 (Song Wuchao, Wang Cong, Wei Yingjie, et al. Influences of microbubble and homogeneous polymer on drag reduction characteristics of axisymmetric body. Acta Armamentarii, 2018, 39(6): 1151-1158 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.06.015
    [6] 郭乐扬, 阮海妮, 李文戈等. 船舶减阻表面工程技术研究进展. 表面技术, 2022, 51(9): 53-64 + 73 (Guo Leyang, Ruan Haini, Li Wenge, et al. Research progress of surface engineering technology for ship drag reduction. Surface Technology, 2022, 51(9): 53-64 + 73 (in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2022.09.005
    [7] 杨永嘉, 杨兆祥, 贺泳霖. 船舶水下减阻抗污涂层的研究进展. 化学通报, 2022, 85(8): 937-942 (Yang Yongjia, Yang Zhaoxiang, He Yonglin. Advance on underwater drag-reduction and anti-fouling coatings for ships. Chemistry, 2022, 85(8): 937-942 (in Chinese)
    [8] Toms BA. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers//Proceedings of the 1 st International Congress on Rheology North Holland. 1948, 135-141
    [9] Zhang X, Duan X, Muzychka YS. Drag Reduction by Polymers: A Brief Review of the History, Research Progress, and Prospects. International Journal of Fluid Mechanics Research, 2021, 48(6)
    [10] 蔡书鹏, 汪志能, 段传伟等. 表面活性剂减阻水溶液突扩流的阻力特性. 力学学报, 2018, 50(2): 274-283 (Cai Shupeng, Wang Zhineng, Duan Chuanwei, et al. Drag characteristics of a drag-reducing surfactant solution flowing over a sudden-expansion pipe. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 274-283 (in Chinese)
    [11] Virk PS. Drag reduction fundamentals. Aiche Journal, 1975, 21(4): 625-656 doi: 10.1002/aic.690210402
    [12] Gu Y, Yu S, Mou J, et al. Research progress on the collaborative drag reduction effect of polymers and surfactants. Materials, 2020, 13(2): 444 doi: 10.3390/ma13020444
    [13] Xi L. Turbulent drag reduction by polymer additives: Fundamentals and recent advances. Physics of Fluids, 2019, 31(12): 121302 doi: 10.1063/1.5129619
    [14] Si X, Luo M, Li M, et al. Application and research progress of turbulent drag reducer in oil and gas field development. Applied Chemical Industry, 2021, 50(6): 1607-1612
    [15] Li M, Zhang H, Xuan K, et al. Research progress of additive turbulence drag reduction. District Heating, 2022(2): 41-49
    [16] Rubin Hillel. Drag reduction application in fire fighting systems. Journal of the Sanitary Engineering Division, 1972, 98(1)
    [17] Perlin M, Dowling DR, Ceccio SL. Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. Journal of Fluids Engineering, 2016, 138(9)
    [18] Fontaine AA, Petri HL, Brungart TA. Velocity profile statistics in turbulent boundary layer with slot-injected polymer. Journal of Fluid Mechanics, 1992, 238: 435-466 doi: 10.1017/S0022112092001770
    [19] Winkel ES, Oweis GF, Vanapalli SA, et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions. Journal of Fluid Mechanics, 2009, 621: 259-288 doi: 10.1017/S0022112008004874
    [20] Shah Y, Yarusevych S. Streamwise evolution of drag reduced turbulent boundary layer with polymer solutions. Physics of Fluids, 2020, 32(6): 065108 doi: 10.1063/5.0009371
    [21] 金善熙. 高分子减阻涂料. 海军工程大学学报, 1987, 1: 86-9 (Jin Shanxi. Polymer drag reducing coating. Journal of Naval University of Engineering, 1987, 1: 86-9 (in Chinese)
    [22] Motozawa M, Ito T, Matsumoto A, et al. Turbulent drag reduction by polymer containing paint: simultaneous measurement of skin friction and release rate//International Heat Transfer Conference. 2010, 49378: 787-795
    [23] Schaaf P, Günschmann S, Hopfeld M, et al. Self-organized nanostructuring of composite coatings at high temperatures for drag reduction and self-cleaning. Surface and Coatings Technology, 2010, 205(5): 1584-1588 doi: 10.1016/j.surfcoat.2010.10.012
    [24] Yang JW, Park H, Chun HH, et al. Development and performance at high Reynolds number of a skin-friction reducing marine paint using polymer additives. Ocean Engineering, 2014, 84: 183-193 doi: 10.1016/j.oceaneng.2014.04.009
    [25] Waskito KT, Ogata S. Effect of agar jelly coating in rectangular pipe to flow drag reduction. Journal of Applied Fluid Mechanics, 2017, 10(4)
    [26] 秦卫华, 刘兰轩, 江英等. 3种低表面能减阻涂层的性能分析. 材料保护, 2018, 51(5): 39-41 (Qin Weihua, Liu Lanxuan, Jiang Ying, et al. Performance of three kinds of low surface energy drag-reduction coatings. Materials Protection, 2018, 51(5): 39-41 (in Chinese)
    [27] 豆照良, 刘峰斌. 船用防污减阻复合功能涂层的制备及性能. 船舶工程, 2018, 40(10): 1-3 + 26 (Dou Zhaoliang, Liu Fengbin. Producing and preparation of marine functional polymer coating for drag reduction and antifouling. Ship Engineering, 2018, 40(10): 1-3 + 26 (in Chinese)
    [28] Rowin WA, Asha AB, Narain R, et al. A novel approach for drag reduction using polymer coating. Ocean Engineering, 2021, 240: 109895 doi: 10.1016/j.oceaneng.2021.109895
    [29] 杨永嘉, 杨兆祥, 贺泳霖. 船舶水下减阻抗污涂层的研究进展. 化学通报, 2022, 85(08): 937-942 (Yang Yongjia, Yang Zhaoxiang, He Yonglin. Advance on underwater drag-reduction and anti-fouling coatings for ships. Chemistry, 2022, 85(08): 937-942 (in Chinese)
    [30] 李茂林, 张浩, 玄克勇等. 添加剂湍流减阻的研究进展. 区域供热, 2022(217): 41-49 (Li Maolin, Zhang Hao, Xuan Keyong, et al. Research progress of additive turbulence drag reduction. District Heating, 2022(217): 41-49 (in Chinese)
    [31] 杨贤程, 任兰庆, 刘飞等. 水相减阻用聚氧化乙烯的研究进展. 节能, 2020, 39(4): 158-162 (Yang Xiancheng, Ren Lanqing, Liu Fei, et al. Research progress in performance and application of PEO for water phase drag reduction. Energy Conservation, 2020, 39(4): 158-162 (in Chinese)
    [32] 戴若丁, 于开波, 李宏等. 聚氧化乙烯减阻效果影响研究. 辽宁化工, 2021, 50(3): 313-316 (Dai Ruoding, Yu Kaibo, Li Hong, et al. Study on drag reduction effect of polyethylene oxide. Liaoning Chemical Industry, 2021, 50(3): 313-316 (in Chinese) doi: 10.3969/j.issn.1004-0935.2021.03.011
    [33] 田伟, 庞明军. 聚氧化乙烯水溶液旋转圆盘减阻实验研究. 东北电力大学学报, 2021, 41(4): 24-34 (Tian Wei, Pang Mingjun. Experimental study on drag reduction of polyethylene oxide solution with rotating disk apparatus. Journal of Northeast Electric Power University, 2021, 41(4): 24-34 (in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  21
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回