EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性谐振电路的双稳态俘能器的俘能与动力学特性研究

梁超 马洪业 王珂 严博

梁超, 马洪业, 王珂, 严博. 基于非线性谐振电路的双稳态俘能器的俘能与动力学特性研究. 力学学报, 2023, 55(5): 1181-1194 doi: 10.6052/0459-1879-23-048
引用本文: 梁超, 马洪业, 王珂, 严博. 基于非线性谐振电路的双稳态俘能器的俘能与动力学特性研究. 力学学报, 2023, 55(5): 1181-1194 doi: 10.6052/0459-1879-23-048
Liang Chao, Ma Hongye, Wang Ke, Yan Bo. Harvesting performance and dynamic responses of the bistable harvester with a nonlinear resonant circuit. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1181-1194 doi: 10.6052/0459-1879-23-048
Citation: Liang Chao, Ma Hongye, Wang Ke, Yan Bo. Harvesting performance and dynamic responses of the bistable harvester with a nonlinear resonant circuit. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1181-1194 doi: 10.6052/0459-1879-23-048

基于非线性谐振电路的双稳态俘能器的俘能与动力学特性研究

doi: 10.6052/0459-1879-23-048
基金项目: 国家自然科学基金项目(52175125)资助
详细信息
    通讯作者:

    马洪业, 博士, 主要研究方向为智能材料与振动控制. E-mail: mahongye20@csu.ac.cn

    王珂, 研究员, 主要研究方向为振动控制与伺服系统设计. E-mail: wangke@csu.ac.cn

  • 中图分类号: O322

HARVESTING PERFORMANCE AND DYNAMIC RESPONSES OF THE BISTABLE HARVESTER WITH A NONLINEAR RESONANT CIRCUIT

Funds: The project was supported by the (12345678)and (9876543)
  • 摘要: 双稳态俘能器可实现宽频和高效的俘能效果. 目前的研究主要在双稳态结构中接入单一电阻电路进行俘能. 本文将非线性RLC (电阻−电感−电容)谐振电路引入到三弹簧式双稳态结构中, 构建两自由度非线性系统, 以实现俘能特性的提升. 设计永磁体与线圈的构型, 获得了非线性机电耦合系数. 推导并得到了两自由度非线性俘能器的控制方程. 利用谐波平衡法推导得到了系统的电流与位移的频率响应关系. 基于雅可比矩阵对解的稳定性进行了判别. 将解析解与数值解进行了对比验证. 结果表明, 在双稳态俘能器中引入非线性二阶谐振电路不仅有利于低频俘能, 还可进一步提升俘能响应, 拓宽俘能带宽. 相同的电路参数下, 与线性电路相比非线性电路可通过电流的倍频现象实现结构更低频率的能量俘获. 减小谐振电路与双稳态结构共振频率之比, 增加基础激励幅值, 减小静平衡点之间的距离均可提升俘能器的俘能效果. 通过调控谐振电路与双稳态共振频率之比和基础激励幅值等参数, 可实现系统单倍周期响应、多倍周期响应及混沌响应之间的切换.

     

  • 图  1  非线性电磁俘能器的构造及对应物理简化模型

    Figure  1.  Configurations of nonlinear electromagnetic harvesters and corresponding simplified physical models

    图  2  “三弹簧”构型双稳态恢复力的精确解与近似解

    Figure  2.  Exact and approximate bistable restoring force of the “three springs” configuration

    图  3  非线性电磁耦合系数的理论解和多项式拟合结果

    Figure  3.  Analytical and approximate nonlinear electromagnetic coupling coefficient

    图  4  理论解与数值解对比

    Figure  4.  Comparison between theoretical solution and numerical solution

    图  5  5 Hz定频激励下相对位移与电流之间的频率关系

    Figure  5.  Relationship between relative displacement and current under 5 Hz constant frequency excitation

    图  6  电阻式俘能器与共振式俘能器性能对比

    Figure  6.  Energy harvesting comparison between the energy harvesters with a pure resistor and with a resonant circuit

    图  7  电路谐振频率对俘能特性的影响

    Figure  7.  Effect of circuit resoance frequency on energy harvesting performance

    图  8  响应位移和电流随频率比的分叉图

    Figure  8.  Birfication diagram of displacement and current with respect to frequency ratio

    图  9  频率比0.25情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面

    Figure  9.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when the frequency ratio is 0.25

    图  10  频率比0.5情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面

    Figure  10.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when the frequency ratio is 0.5

    10  频率比0.5情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面 (续)

    10.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when the frequency ratio is 0.5 (continued)

    图  11  频率比0.75情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面

    Figure  11.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when frequency ratio is 0.75

    图  12  激励幅值对俘能特性的影响

    Figure  12.  Effect of excitation amplitude on energy harvesting performance

    图  13  响应位移和电流随激励幅值的分叉图

    Figure  13.  Birfication diagram of displacement and current with respect to excitation amplitude

    图  14  激励幅值x0 = 0.75 mm情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面

    Figure  14.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when x0 = 0.75 mm

    14  激励幅值x0 = 0.75 mm情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面 (续)

    14.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when x0 = 0.75 mm (continued)

    图  15  激励幅值x0 = 1 mm情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面

    Figure  15.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when x0 = 1 mm

    图  16  激励幅值x0 = 2 mm情况下位移和电流的时域响应、傅里叶频谱、相轨迹及庞加莱截面

    Figure  16.  Output responses, Fourier frequency responses, phase orbit, and Poincare map of displacement and current when x0 = 2 mm

    图  17  静平衡位置和势能井深度对俘能特性的影响

    Figure  17.  Effect of static equilibrium position and depth of potential energy on energy harvesting performance

    17  静平衡位置和势能井深度对俘能特性的影响 (续)

    17.  Effect of static equilibrium position and depth of potential energy on energy harvesting performance (continued)

    表  1  线圈和永磁体的参数配置

    Table  1.   Parameters of coils and permanent magnets (PM)

    NameValue
    residual magnetic flux density Br/T1.19
    inner radius of PM Rin/mm9
    outer radius of PM Rout/mm14
    height of PM Ht/mm10
    distance between PMs H/mm3
    average radius of coil Ra/mm16.5
    number of coil turn350 + 350
    resistance of coil Re24.9
    inductance of coil Le/mH2.01
    下载: 导出CSV

    表  2  仿真分析中用到的固定参数数值

    Table  2.   Parameters values used in simulation

    Parameters nameValue
    m/kg0.5
    k0/(N·m)1.4061 × 103
    kh/(N·m)2 × 103
    k1/(N·m)−2100
    k3/(N·m)2 × 107
    c/(N·s·m−1)2.6515
    c1/(N·A−1·m−1)1.0674 × 103
    c3/ (N·A−1·m−3)9.2731 × 106
    C/F1/(8π2)
    下载: 导出CSV
  • [1] Wang J, Hu G, Zhao L, et al. Perspectives in flow-induced vibration energy harvesting. Applied Physics Letters, 2021, 119: 100502 doi: 10.1063/5.0063488
    [2] Yau C, Kwok T , Lei C, et al. Energy Harvesting in Internet of Things. Singapore: Springer, 2018: 35-79
    [3] 钱有华, 陈娅昵. 双稳态压电俘能器的簇发振荡与俘能效率分析. 力学学报, 2022, 54(11): 3157-3168 (Qian Youhua, Chen Yani. Bursting oscillations and energy harvesting efficiency analysis of bistable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3157-3168 (in Chinese) doi: 10.6052/0459-1879-22-298
    [4] 赵林川, 邹鸿翔, 刘丰瑞等. 压电与摩擦电复合型旋转能量采集动力学协同调控机制研究. 力学学报, 2021, 53(11): 2961-2971 (Zhao Linchuan, Zou Hongxiang, Liu Fengrui, et al. Hybrid piezoelectric-triboelectric rotational energy harvester using dynamic coordinated modulation mechanism. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971 (in Chinese) doi: 10.6052/0459-1879-21-410
    [5] Yan B, Yu N, Zhang L, et al. Scavenging vibrational energy with a novel bistable electromagnetic energy garvester. Smart Materials and Structures, 2020, 29: 025022 doi: 10.1088/1361-665X/ab62e1
    [6] 张伟, 刘爽, 毛佳佳等. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报, 2022, 54(4): 1102-1112 (Zhang Wei, Liu Shuang, Mao Jiajia, et al. Design and energy capture characteristics of magnetically coupled bistable wide band piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1102-1112 (in Chinese) doi: 10.6052/0459-1879-21-676
    [7] Tao K, Chen Z, Yi H, et al. Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting. Nano-Micro Letters, 2021, 13(1): 123 doi: 10.1007/s40820-021-00644-0
    [8] Tan D, Zhou J, Wang K, et al. Bow-type bistable triboelectric nanogenerator for harvesting energy from low-frequency vibration. Nano Energy, 2022, 92: 106746 doi: 10.1016/j.nanoen.2021.106746
    [9] Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Joule, 2018, 2(4): 642-697 doi: 10.1016/j.joule.2018.03.011
    [10] Yildirim T, Ghayesh M, Li W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable and Sustainable Energy Reviews, 2017, 71: 435-449 doi: 10.1016/j.rser.2016.12.073
    [11] Li P, Liu Y, Wang Y, et al. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure. AIP Advances, 2015, 5(4): 047151 doi: 10.1063/1.4919711
    [12] Liu D, Al-Haik M, Zakaria M, et al. Piezoelectric energy harvesting using L-Shaped structures. Journal of Intelligent Material Systems and Structures, 2017, 29(6): 1206-1215
    [13] Zhou S, Hobeck JD, Cao J, et al. Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting. Smart Materials and Structures, 2017, 26(3): 035008 doi: 10.1088/1361-665X/26/3/035008
    [14] Zhou S, Cao J, Inman D, et al. Impact-induced high-energy orbits of nonlinear energy harvesters. Applied Physics Letters, 2015, 106(9): 093901 doi: 10.1063/1.4913606
    [15] Kong X, Li H, Wu C. Dynamics of 1-Dof and 2-Dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dynamics, 2017, 91: 733-754
    [16] Zou H, Zhang W, Wei K, et al. A compressive-mode wideband vibration energy harvester using a combination of bistable and flextensional mechanisms. Journal of Applied Mechanics, 2016, 83(12): 121005 doi: 10.1115/1.4034563
    [17] 张旭辉, 陈路阳, 陈孝玉等. 线形−拱形组合梁式三稳态压电俘能器动力学特性研究. 力学学报, 2021, 53(11): 2996-3006 (Zhang Xuhui, Chen Luyang, Chen Xiaoyu, et al. Research on dynamics characteristics of linear-arch composed beam tri-stable piezoelectric energy harvester. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2996-3006 (in Chinese) doi: 10.6052/0459-1879-21-392
    [18] Huguet T, Badel A, Lallart M. Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting. Applied Physics Letters, 2017, 111(17): 173905 doi: 10.1063/1.5001267
    [19] Yu N, Ma H, Wu C, et al. Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester. Mechanical Systems and Signal Processing, 2021, 156: 107608 doi: 10.1016/j.ymssp.2021.107608
    [20] 任博林. 基于双稳态发电系统的非线性吸振器动力学特性研究. [硕士论文]. 西安: 西安理工大学, 2017

    Ren Bolin. Research on the dynamic characteristics of nonlinear vibration absorber based on bistable generation system. [Master Thesis]. Xi’an: Xi’an University of Technology, 2017 (in Chineses))
    [21] Zhou S, Cao J, Inman D, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
    [22] Huang D, Zhou S, Litak G. Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 2019, 69: 270-286 doi: 10.1016/j.cnsns.2018.09.025
    [23] Kim P, Seok J. A multi-stable energy harvester: dynamic modeling and bifurcation analysis. Journal of Sound and Vibration, 2014, 333(21): 5525-5547 doi: 10.1016/j.jsv.2014.05.054
    [24] Pellegrini S, Tolou N, Schenk M, et al. Bistable vibration energy harvesters: a review. Journal of Intelligent Material Systems and Structures, 2012, 24(11): 1303-1312
    [25] Wu Y, Ji H, Qiu J, et al. An internal resonance based frequency up-converting energy garvester. Journal of Intelligent Material Systems and Structures, 2018, 29(13): 2766-2781 doi: 10.1177/1045389X18778370
    [26] Daqaq M. Transduction of a bistable inductive generator driven by white and exponentially correlated gaussian noise. Journal of Sound and Vibration, 2011, 330(11): 2554-2564 doi: 10.1016/j.jsv.2010.12.005
    [27] Cottone F, Vocca H, Gammaitoni L. Nonlinear energy garvesting. Physical Review Letters, 2009, 102(8): 080601 doi: 10.1103/PhysRevLett.102.080601
    [28] Elliott S, Zilletti M. Scaling of electromagnetic transducers for shunt damping and energy harvesting. Journal of Sound and Vibration, 2014, 333(8): 2185-2195 doi: 10.1016/j.jsv.2013.11.036
    [29] Carrella A, Brennan M, Waters T, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 2012, 55(1): 22-29 doi: 10.1016/j.ijmecsci.2011.11.012
    [30] Yan B, Luo Y, Zhang X. Structural multimode vibration absorbing with electromagnetic shunt damping. Journal of Vibration and Control, 2014, 22(6): 1604-1617
    [31] Yan B, Zhang X, Niu H. Design and test of a novel isolator with negative resistance electromagnetic shunt damping. Smart Materials and Structures, 2012, 21(3): 035003 doi: 10.1088/0964-1726/21/3/035003
    [32] Ma H, Yan B. Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mechanical Systems and Signal Processing, 2021, 146: 107010 doi: 10.1016/j.ymssp.2020.107010
    [33] 陈予恕. 非线性振动. 北京: 高等教育出版社, 2002

    Chen Yushu. Nonlinear Vibrations. Beijing: Higher Education Press, 2002 (in Chinese))
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  73
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-17
  • 录用日期:  2023-03-22
  • 网络出版日期:  2023-03-23
  • 刊出日期:  2023-05-18

目录

    /

    返回文章
    返回