EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逆向等离子体合成射流抑制低速流动分离的研究

孙志坤 史志伟 李铮 耿玺 张伟麟

孙志坤, 史志伟, 李铮, 耿玺, 张伟麟. 逆向等离子体合成射流抑制低速流动分离的研究. 力学学报, 2023, 55(6): 1-11 doi: 10.6052/0459-1879-23-005
引用本文: 孙志坤, 史志伟, 李铮, 耿玺, 张伟麟. 逆向等离子体合成射流抑制低速流动分离的研究. 力学学报, 2023, 55(6): 1-11 doi: 10.6052/0459-1879-23-005
Sun Zhikun, Shi Zhiwei, Li Zheng, Geng Xi, Zhang Weilin. Opposing plasma synthetic jet for low-speed flow separation inhibition. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1-11 doi: 10.6052/0459-1879-23-005
Citation: Sun Zhikun, Shi Zhiwei, Li Zheng, Geng Xi, Zhang Weilin. Opposing plasma synthetic jet for low-speed flow separation inhibition. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1-11 doi: 10.6052/0459-1879-23-005

逆向等离子体合成射流抑制低速流动分离的研究

doi: 10.6052/0459-1879-23-005
详细信息
    作者简介:

    史志伟, 教授, 主要研究方向为飞行器设计与流动控制 . E-mail: szwam@nuaa.edu.cn

  • 中图分类号: V19

OPPOSING PLASMA SYNTHETIC JET FOR LOW-SPEED FLOW SEPARATION INHIBITION

  • 摘要: 等离子体合成射流是一种能抑制流动分离的高能激励. 通过实验和数值仿真的方法调查了等离子合成射流对低速翼型流动分离的抑制. 激励器的电极内置在翼型内部, 射流孔位于前缘点. 流场烟雾粒子浓度分布和数值模拟的结果均表明逆向等离子体合成射流能推移低速翼型的流动分离点, 并提升翼型的升力特性. 逆向等离子体合成射流推移分离点距离和提升翼型升力特性的能力随迎角的增大而增强. 当迎角为16°时, 等离子体激励推移翼型流动分离点的距离约占弦长的16.5%, 提升翼型升力系数约17.3%. 结果表明低速流动中, 逆向等离子体合成射流产生的热射流与主流相互作用会形成条带状热结构. 条带状热结构具有先导掺混作用, 能增强主流与分离剪切层内流体的掺混. 而射流主体具有掺混和诱导作用, 能诱导分离剪切层的动态重新附壁. 条带状热结构、射流主体与主流的相互作用是逆向等离子合成射流抑制低速翼型流动分离, 提高翼型升力特性的主要机制. 在不同的阶段, 条带状热结构的作用和射流主体的作用不同. 这种差异性导致它们的耦合性也发生了变化, 并使得翼型的升力特性出现了五种典型阶段. 此外, 实验结果还表明放电参数恒定时, 串联阵列式激励器的流动控制效果强于单个激励器.

     

  • 图  1  实验模型及装置

    Figure  1.  Experimental models and devices

    图  2  流场的网格划分

    Figure  2.  Schematic diagram of grid division

    图  3  不同迎角下的数值和实验结果

    Figure  3.  Numerical and experimental results at different angles of attack

    图  4  α = 16°时流场密度梯度的变化

    Figure  4.  Variation of density gradient of the flow field when α = 16°

    图  5  α = 16°时流场的流动: (a) 密度梯度和压力和(b) 速度

    Figure  5.  The flow field when α = 16°: (a) density gradient magnitude and pressure and (b) velocity

    图  6  α = 16°时流场温度的变化

    Figure  6.  Variation of temperature of the flow field when α = 16°

    图  7  分离点后移的距离

    Figure  7.  Distance of separation point moving back

    图  8  α = 16°时流场压力的变化

    Figure  8.  Variation of pressure of the flow field when α = 16°

    图  9  单个脉冲周期内翼型的升力特性

    Figure  9.  Lift characteristics of the airfoil in a single pulse period

    图  10  不同迎角下NACA 4415的时均升力特性

    Figure  10.  Time-averaged lift characteristics of NACA 4415 at different angles of attack

  • [1] 李应红, 吴云, 梁华等. 等离子体激励气动力学探索与展望. 力学进展, 2022, 52(1): 1-32 (Li Yinghong, Wu Yun, Liang Hua, et al. Exploration and outlook of plasma-actuated gas dynamics. Advances in Mechanics, 2022, 52(1): 1-32 (in Chinese) doi: 10.6052/1000-0992-21-044
    [2] Grossman K, Bohdan C, Vanwie D. Sparkjet actuators for flow control//41st Aerospace Sciences Meeting and Exhibit, 2003
    [3] Zhang Z, Wu Y, Jia M, et al. Influence of the discharge location on the performance of a three-electrode plasma synthetic jet actuator. Sensors and Actuators A: Physical, 2015, 235: 71-79
    [4] Zong HH, Wu Y, Jia M, et al. Influence of geometrical parameters on performance of plasma synthetic jet actuator. Journal of Physics D: Applied Physics, 2016, 49(2): 025504
    [5] Dong H, Geng X, Shi Z, et al. On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator. Japanese Journal of Applied Physics, 2019, 58(2): 028002
    [6] Zong H, Kotsonis M. Characterisation of plasma synthetic jet actuators in quiescent flow. Journal of Physics D: Applied Physics, 2016, 49(33): 335202
    [7] Zong H, Kotsonis M. Effect of slotted exit orifice on performance of plasma synthetic jet actuator. Experiments in Fluids, 2017, 58(3): 17
    [8] Zong H, Kotsonis M. Formation, evolution and scaling of plasma synthetic jets. Journal of Fluid Mechanics, 2017, 837: 147-181
    [9] Wang L, Xia ZX, Luo ZB, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA Journal, 2014, 52(4): 879-882
    [10] Sarah J Haack TT, Jerry E, et al. Development of an analytical sparkjet model//5th Flow Control Conference, 2010.
    [11] Zong HH, Wu Y, Li YH, et al. Analytic model and frequency characteristics of plasma synthetic jet actuator. Physics of Fluids, 2015, 27(2): 027105
    [12] Ibrahim IH, Skote M. Simulating plasma actuators in a channel flow configuration by utilizing the modified Suzen–Huang model. Computers & Fluids, 2014, 99: 144-155
    [13] Mengxiao T, Yun W, Hongyu W, et al. Characterization of transverse plasma jet and its effects on ramp induced separation. Experimental Thermal and Fluid Science, 2018, 99: 584-594
    [14] Zong H, Kotsonis M. Experimental investigation on frequency characteristics of plasma synthetic jets. Physics of Fluids, 2017, 29(11): 115107
    [15] Geng X, Zhang W, Shi Z, et al. Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects. Physics of Fluids, 2021, 33(6): 067113
    [16] 李铮, 徐聪, 张健等. 等离子体合成射流激励器高速流场逆向喷流控制研究. 航空学报, 2022, 43(S2): 727789-9 (Li Zheng, Xu Cong, Zhang Jian, et al. Study on reverse jet flow control by plasma synthetic jet actuator in high speed flow field. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727789-9 (in Chinese)
    [17] 马正雪, 罗振兵, 赵爱红等. 高超声速流场等离子体合成射流逆向喷流特性研究. 航空学报, 2022, 43(S2): 27747-11 (Ma Zhengxue, Luo Zhenbing, Zhao Aihong, et al. Research on the reverse jet of plasma synthetic jet at hypersonic speed. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 27747-11 (in Chinese)
    [18] 孙志坤, 史志伟, 张伟麟等. 等离子体激励器对高速翼型升阻特性的影响. 航空学报, 2022, 43(S2): 727705-16 (Sun Zhikun, Shi Zhiwei, Zhang Weilin, et al. Effect of plasma actuator on lift-drag characteristics of high-speed airfoil. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727705-16 (in Chinese)
    [19] 吴云, 李应红. 等离子体流动控制研究进展与展望. 航空学报, 2015, 36(2): 381-405 (Wu Yun, Li Yinghong. Progress and outlook of plasma flow control. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese)
    [20] 李洋, 梁华, 贾敏等. 等离子体合成射流改善翼型气动性能实验研究. 推进技术, 2017, 38(9): 1943-1949 (Li Yang, Liang Hua, Jia Min, et al. Experimental investigation of enhancingwing aerodynamic performance by plasma synthetic jet. Journal of Propulsion Technology, 2017, 38(9): 1943-1949 (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.09.004
    [21] 苏志, 李军, 梁华等. 多路等离子体合成射流改善翼型性能实验研究. 推进技术, 2018, 39(9): 1928-1937 (Su Zhi, Li Jun, Liang Hua, et al. Experimental investigation of enhancing airfoil aerodynamic performance with multichannel plasma synthetic jet. Journal of Propulsion Technology, 2018, 39(9): 1928-1937 (in Chinese)
    [22] Gao T, Luo Z, Zhou Y, et al. Novel deicing method based on plasma synthetic jet actuator. AIAA Journal, 2020, 58(9): 4181-4188
    [23] Gao T, Luo Z, Zhou Y, et al. Experimental investigation on ice-breaking performance of a novel plasma striker. Chinese Journal of Aeronautics, 2022, 35(1): 307-317
    [24] Laurendeau F, Chedevergne F, Casalis G. Transient ejection phase modeling of a plasma synthetic jet actuator. Physics of Fluids, 2014, 26(12): 125101
    [25] Shin JY, Kim HJ, Kim KH. Development of one-dimensional analytical model for a sparkjet actuator. AIAA Journal, 2021, 59(3): 1055-1074
    [26] Anderson KV, Knight DD. Plasma jet for flight control. AIAA Journal, 2012, 50(9): 1855-1872
    [27] Xie W, Luo Z, Zhou Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction. Chinese Journal of Aeronautics, 2022, 35(8): 75-91
    [28] Narayanaswamy V, Raja LL, Clemens NT. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA Journal, 2012, 50(1): 246-249
    [29] Narayanaswamy V, Raja LL, Clemens NT. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Physics of Fluids, 2012, 24(7): 076101
    [30] Greene BR, Clemens NT, Magari P, et al. Control of mean separation in shock boundary layer interaction using pulsed plasma jets. Shock Waves, 2014, 25(5): 495-505
    [31] Liu R, Niu Z, Wang M, et al. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets. Science China Technological Sciences, 2015, 58(11): 1949-1955
    [32] Sun Z, Shi Z, Zhang W, et al. Numerical investigation on flow control of a hypersonic airfoil by plasma synthetic jet. Journal of Aerospace Engineering, 2022, 35(5): 04022071
    [33] Jin D, Cui W, Li Y, et al. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow. Chinese Journal of Aeronautics, 2015, 28(1): 66-76
    [34] Li Z, Shi Z, Du H. Analytical model:characteristics of nanosecond pulsed plasma synthetic jet actuator in multiple-pulsed mode. Advances in Applied Mathematics and Mechanics, 2017, 9(2): 439-462
    [35] Zhang W, Geng X, Shi Z, et al. Study on inner characteristics of plasma synthetic jet actuator and geometric effects. Aerospace Science and Technology, 2020, 105: 106044
    [36] Du H, Shi Z, Cheng K, et al. The study of flow separation control by a nanosecond pulse discharge actuator. Experimental Thermal and Fluid Science, 2016, 74: 110-121
  • 加载中
图(10)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  57
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-03
  • 录用日期:  2023-03-20
  • 网络出版日期:  2023-03-21

目录

    /

    返回文章
    返回