EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分区有限线法及其在复合结构热应力分析中的应用

刘华雩 高效伟 范伟龙

刘华雩, 高效伟, 范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报, 2023, 55(7): 1-13 doi: 10.6052/0459-1879-23-003
引用本文: 刘华雩, 高效伟, 范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报, 2023, 55(7): 1-13 doi: 10.6052/0459-1879-23-003
Liu HuaYu, Gao XiaoWei, Fan WeiLong. Zonal finite line method and its applications in analyzing thermal stress of composite structures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1-13 doi: 10.6052/0459-1879-23-003
Citation: Liu HuaYu, Gao XiaoWei, Fan WeiLong. Zonal finite line method and its applications in analyzing thermal stress of composite structures. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1-13 doi: 10.6052/0459-1879-23-003

分区有限线法及其在复合结构热应力分析中的应用

doi: 10.6052/0459-1879-23-003
基金项目: 国家自然科学基金资助项目(12072064)
详细信息
    通讯作者:

    高效伟, 教授, 主要研究方向: 多物理场耦合数值方法. E-mail: xwgao@dlut.edu.cn

  • 中图分类号: O343.6

ZONAL FINITE LINE METHOD AND ITS APPLICATIONS IN ANALYZING THERMAL STRESS OF COMPOSITE STRUCTURES

  • 摘要: 介绍一种全新的数值方法——分区有限线法 (zonal finite line method, ZFLM), 并将其应用于求解复合结构中的热应力问题. FLM是一种配点型的强形式算法, 对于每个配置点, 由过其的两条(二维问题)或三条(三维问题)线段建立一个交叉线系, 采用拉格朗日插值多项式对每条线段的坐标与物理量进行函数表征, 并用沿弧长方向求导法创建任意物理量对总体坐标的一阶偏导数解析计算式, 通过递推技术, 由一阶偏导数公式建立二阶偏导数计算式. 采用建立的偏导数计算式, 可直接由问题的控制微分方程及其边界条件建立离散的总体系统方程组. 为了建立高效的有限线法和能够求解复杂的由多种材料组成的复合结构问题, 提出一种分区计算方法, 即: 根据材料的不同或几何与载荷的不规则性, 将所分析的问题划分为若干个结构化计算区域, 在每个区域由插值函数自动产生一系列配置点, 并用有限线法建立每个配置点的离散方程. 对于区域间的公共节点, 由物理量的协调条件以及界面力的平衡条件建立界面节点代数方程; 对于几何不规则或载荷跳跃问题, 采用面力方程叠加法建立非规则节点的代数方程, 以提高计算结果的稳定性. 采用本文方法对二维/三维结构的热应力进行分析. 计算结果表明本文方法具有很好的精度, 且在边界上的应力更为精确, 应力集中的效果更为明显.

     

  • 图  1  二维问题点系离散以及线系示意图

    Figure  1.  Schematic diagram of the point system discretization and line system in 2 D problems

    图  2  每条线段由5个节点组成的线系

    Figure  2.  The line system consisting of line segments with 5 nodes

    图  3  一阶与二阶导数相关的节点示意图

    Figure  3.  Related nodes of the 1st and 2nd order partial derivatives

    图  4  由大块单元产生配置点与线系

    Figure  4.  Generating collocation nodes and line systems from unit blocks

    图  5  位于常规界面上的节点(只有2个区域共享)

    Figure  5.  Nodes located on the regular interface (shared by only two regions)

    图  6  界面节点为4区域相接的角点

    Figure  6.  The interface node is a corner point shared by four regions

    图  7  具有跳跃面力边界条件的区域分解示意图

    Figure  7.  Schematic of the regional decomposition with jump surface forces boundary conditions

    图  8  具有跳跃面力边界条件的功能梯度薄板

    Figure  8.  Functional gradient laminates with jump surface force boundary conditions

    图  9  功能梯度材料薄梁的2个计算域及其生成的配置点

    Figure  9.  Two computational domains of thin beams in functional gradient materials and the generated collocation nodes thereof

    图  10  温度场计算中得到的温度场云图

    Figure  10.  Temperature contours obtained in the temperature field calculation

    图  11  热应力分析中得到的变形图

    Figure  11.  The deformation diagram obtained in the thermal stress analysis

    图  12  热应力分析中得到的von-Mises应力云图

    Figure  12.  Von-Mises stress contours obtained from the thermal stress analysis

    图  13  梁中面温度分布

    Figure  13.  Temperature distributions in the middle surface

    图  14  梁中面挠度分布

    Figure  14.  Deflection distributions in the middle surface

    图  15  下表面Mises应力分布

    Figure  15.  Mises stress distributions on the lower surface

    图  16  L形复合结构及分区网格(密网格)

    Figure  16.  L-shaped composite structure and partitioned grid (dense grid)

    图  17  温度分布云图

    Figure  17.  Temperature distribution clouds map

    图  18  L形结构应力云图

    Figure  18.  L-shaped structure stress clouds

    图  19  L形结构底端位移曲线

    Figure  19.  Displacement curves at the bottom of the L-shaped structure

    图  20  L形结构底端Mises应力曲线

    Figure  20.  Mises stress curves at the bottom of the L-shaped structure

    图  21  多层材料厚壁圆筒

    Figure  21.  Laminated thick-walled cylinders

    图  22  厚壁圆筒的区域划分与线系连成的网格

    Figure  22.  Area division of thick-walled cylinders and the grid connected by line system

    图  23  沿厚度的温度变化曲线

    Figure  23.  Temperature curves along the thickness

    图  24  沿厚度的径向位移变化曲线

    Figure  24.  Radial displacement curves along the thickness

    图  25  沿厚度的Mises应力变化曲线

    Figure  25.  Mises stress curves along the thickness

    图  26  梯度材料圆筒x方向位移云图

    Figure  26.  Displacement clouds of gradient material cylinder in x-direction

    图  27  梯度材料圆筒温度分布

    Figure  27.  Temperature distributions of gradient material cylinder

    图  28  梯度材料圆筒应力分布

    Figure  28.  Stress distributions in cylinder of gradient materials

    图  29  不同网格计算出的圆筒应力与参考解误差

    Figure  29.  Errors of cylinder stresses calculated by different meshes from the reference solution

    表  1  各层的厚度与物性参数

    Table  1.   Thickness and physical parameters of each layer

    LayerH/mm$ \mathrm{\lambda }[ $$\lambda $ /(W·m−1·K−1)E/MPaν$\alpha / {10^{ - 6}}$
    15.020.010.00.20.5
    210.02.01.00.10.1
    310.010.020.00.31.0
    下载: 导出CSV
  • [1] 庄茁, 柳占立, 王永亮. 页岩油气高效开发中的基础理论与关键力学问题. 力学季刊, 2015, 36(1): 11-25 (Zhuang Zhu, Liu Zhanli, Wang Yongliang. Fundamental theory and key mechanical problems of shale oil gas effective extraction. Chinese Quarterly of Mechanics, 2015, 36(1): 11-25 (in Chinese) doi: 10.15959/j.cnki.0254-0053.2015.01.002
    [2] Keyes D, McInnes L, Woodward C, et al. Multiphysics simulations: challenges and opportunities. International Journal of High Performance Computing Applications, 2013, 27(1): 4-83
    [3] 安效民, 徐敏, 陈士橹. 多场耦合求解非线性气动弹性的研究综述. 力学进展, 2009, 39(3): 284-298 (An Xiaomin, Xu Min, Chen Shilu. An overview of CFD/CSD coupled solution for nonlinear aeroelasticity. Advances in Mechanics, 2009, 39(3): 284-298 (in Chinese)
    [4] 邢景棠. 线性与非线性流固耦合动力学数值方法的进展及应用(英文). 力学进展, 2016, 46(1): 201602 (Xing Jingtang. Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications. Advances in Mechanics, 2016, 46(1): 201602
    [5] 王勖成. 有限单元法. 北京: 清华大学出版社, 2003

    Wang Xucheng. Finite Element Method. Beijing: Tsinghua University Press, 2003 (in Chinese)
    [6] 查晶晶, 万德成. 用OpenFOAM实现数值水池造波和消波. 海洋工程, 2011, 29(3): 1-12 (Zha Jingjing, Wan Decheng. Numerical wave generation and absorption based on OpenFOAM. The Ocean Engineering, 2011, 29(3): 1-12 (in Chinese)
    [7] 岳建华, 杨海燕, 胡搏. 矿井瞬变电磁法三维时域有限差分数值模拟. 地球物理学进展, 2007(6): 1904-1909 (Yue Jianhua, Yang Haiyan, Hu Bo. 3D finite difference time domain numerical simulation for TEM in-mine. Progress in Geophysics, 2007(6): 1904-1909 (in Chinese)
    [8] 叶珍宝, 周海京. 高阶间断伽辽金时域有限元方法分析三维谐振腔. 计算物理, 2015, 32(4): 449-454 (Ye Zhenbao, Zhou Haijing. High-order discontinuous Galerkin time-domain finite-element method for three-dimensional cavities. Chinese Journal of Computational Physics, 2015, 32(4): 449-454 (in Chinese)
    [9] 高效伟, 彭海峰, 杨恺等. 高等边界单元法. 北京: 科学出版社, 2015

    Gao Xiaowei, Peng Haifeng, Yang Kai, et al. Advanced Boundary Element Method. Beijing: Science Press, 2014 (in Chinese)
    [10] Yang K, Peng HF, Wang J, et al. Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity. International Journal of Heat and Mass Transfer, 2017, 108: 1551-1559
    [11] 高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法. 力学学报, 2015, 47(5): 868-873 (Gao Xiaowei, Zheng Baojing, Liu Jian. Dynamic fracture analysis of functionally graded materials by radial integration BEM. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 868-873 (in Chinese)
    [12] 程玉民. 无网格方法. 北京: 科学出版社, 2015 (Cheng Yumin. Meshless Method. Beijing: Science Press, 2014 (in Chinese))
    [13] 王东东, 张汉杰, 梁庆文. 等几何修正准凸无网格法. 计算力学学报, 2016, 33(4): 605-612 (Wang Dongdong, Zhang Hanjie, Liang Qingwen. Isogeometric refined quasi-convex meshfree method. Chinese Journal of Computational Mechanics, 2016, 33(4): 605-612 (in Chinese)
    [14] 张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用. 计算力学学报, 2003(6): 730-742 (Zhang Xiong, Song Kangzu, Lu Mingwan. Research progress and application of meshless method. Chinese Journal of Computational Mechanics, 2003(6): 730-742 (in Chinese)
    [15] 彭建新, 谢桂兰, 刘新等. 无网格Galerkin法在金属弹塑性大变形问题中的应用. 机械科学与技术, 2009, 28(9): 1248-1251 (Peng Jianxin, Xie Guilan, Liu Xin, et al. Application of meshless Galerkin method to metal elasto-plastic large deformation problems. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(9): 1248-1251 (in Chinese)
    [16] 程晗. 基于改进SPH方法的船体与自由面流固耦合问题研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2020

    Cheng Han. Research on fluid-solid coupling between hull and free surface based on an improved SPH method. [Doctoral Thesis]. Harbin: Harbin Engineering University, 2020 (in Chinese)
    [17] 张涵信, 沈孟育. 计算流体力学:差分方法的原理和应用. 北京: 国防工业出版社, 2003

    Zhang Hanxin, Shen Mengyu. Computational Fluid Dynamics: Principles and Applications of Difference Methods. Beijing: National Defense Industry Press, 2003 (in Chinese)
    [18] Gao XW, Gao LF, Zhang Y, et al. Free element collocation method: A new method combining advantages of finite element and mesh free methods. Computers & Structures, 2019, 215: 10-26
    [19] 高效伟, 徐兵兵, 吕军等. 自由单元法及其在结构分析中的应用. 力学学报, 2019, 51(3): 703-713 (Gao Xiaowei, Xu Bingbing, Lu Jun, et al. Free element method and its application in structural analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713 (in Chinese)
    [20] Liu HY, Gao XW, Xu BB. An implicit free element method for simulation of compressible flow. Computers & Fluids, 2019, 192: 104276
    [21] Liu HY, Gao XW, Xu BB. A free element scheme for simulating two- and three-dimensional incompressible fluid flow. International Journal for Numerical Methods in Fluids. 2021, 93: 1163–1182.
    [22] Jun L, Shao MJ, Xue YT, et al. A new strong form technique for Thermo-Electro-Mechanical behaviors of piezoelectric solids. Coatings, 2021, 11(6): 687 doi: 10.3390/coatings11060687
    [23] Gao XW, Liu HY, Ruan B. Discontinuous zone free element method with variable condensation and applications in thermal-stress analysis of functionally graded material structures with cracks. Computers & Structures, 2021, 243: 106411
    [24] Gao XW, Zhu YM, Pan T. Finite line method for solving high-order partial differential equations in science and engineering. Partial Differential Equations in Applied Mathematics, 2023, 7: 100477 doi: 10.1016/j.padiff.2022.100477
    [25] Gao XW. Cross-lines method for solving heat conduction problems, lecture notes in mechanical engineering//Proceedings of International Conference on Advanced Mechanical and Power Engineering (CAMPE-2021), online (Kharkiv, Ukraine), 2021. Switzerland: Springer, 2022. 343-353
    [26] 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用. 物理学报, 2022, 71(19): 190201 (Gao Xiaowei, Ding Jinxing, Liu Huayu. Finite line method and its application in coupled heat transfer between fluid-solid domains. Acta Phys, 2022, 71(19): 190201 (in Chinese)
    [27] Wang DD, Wang JR, Wu JC. Superconvergent gradient smoothing meshfree collocation method. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 728-766 doi: 10.1016/j.cma.2018.06.021
    [28] 樊礼恒, 王东东, 刘宇翔等. 节点梯度光滑有限元配点法. 力学学报, 2021, 53(2): 467-481 (Fan Liheng, Wang Dongdong, Liu Yuxiang, et al. A finite element collocation method with smoothed nodal gradients. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481 (in Chinese) doi: 10.6052/0459-1879-20-361
    [29] 邓立克, 王东东, 王家睿等. 薄板分析的线性基梯度光滑伽辽金无网格法. 力学学报, 2019, 51(3): 690-702 (Deng Like, Wang Dongdong, Wang Jiarui, et al. A gradient smoothing Galerkin meshfree method for thin plate analysis with linear basis function. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702 (in Chinese) doi: 10.6052/0459-1879-19-004
    [30] Gao XW, Liang Y, Xu BB. Cross-line elements for free element method in thermal and mechanical analyses of functionally gradient materials. Engineering Analysis with Boundary Elements, 2019, 108(11): 422-437
  • 加载中
图(29) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  22
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-05-08

目录

    /

    返回文章
    返回