ZONAL FINITE LINE METHOD AND ITS APPLICATIONS IN ANALYZING THERMAL STRESS OF COMPOSITE STRUCTURES
-
摘要: 介绍一种全新的数值方法——分区有限线法 (zonal finite line method, ZFLM), 并将其应用于求解复合结构中的热应力问题. FLM是一种配点型的强形式算法, 对于每个配置点, 由过其的两条(二维问题)或三条(三维问题)线段建立一个交叉线系, 采用拉格朗日插值多项式对每条线段的坐标与物理量进行函数表征, 并用沿弧长方向求导法创建任意物理量对总体坐标的一阶偏导数解析计算式, 通过递推技术, 由一阶偏导数公式建立二阶偏导数计算式. 采用建立的偏导数计算式, 可直接由问题的控制微分方程及其边界条件建立离散的总体系统方程组. 为了建立高效的有限线法和能够求解复杂的由多种材料组成的复合结构问题, 提出一种分区计算方法, 即: 根据材料的不同或几何与载荷的不规则性, 将所分析的问题划分为若干个结构化计算区域, 在每个区域由插值函数自动产生一系列配置点, 并用有限线法建立每个配置点的离散方程. 对于区域间的公共节点, 由物理量的协调条件以及界面力的平衡条件建立界面节点代数方程; 对于几何不规则或载荷跳跃问题, 采用面力方程叠加法建立非规则节点的代数方程, 以提高计算结果的稳定性. 采用本文方法对二维/三维结构的热应力进行分析. 计算结果表明本文方法具有很好的精度, 且在边界上的应力更为精确, 应力集中的效果更为明显.Abstract: In this paper, we proposed a novel numerical method, Zonal Free Element Method (ZFLM), and used the proposed method to compute thermal stress in composite structures. ZFLM is a strong-form numerical method which solves the governing equations in differential form. For each node, we use two (two-dimension problems) or three (three-dimensions problems) lines to form a cross-line system. Then, we use Lagrange interpolating method to interpolate nodal coordinates and approximate the variables on each line. The gradients in the curvature direction are computed by the gradients of interpolating functions along the line. By a recursive procedure, the second or higher order of derivatives can be obtained by the expressions of the first order derivatives. Substituting the expressions of derivatives into the governing partial difference equations, we obtain the discretized linear system of equations. To solve the problem involving multiple kinds of composite structures efficiently, we use a zonal method. In the zonal method, we divide the computational domain into several regular zones by material types and geometric characteristics. We insert nodes in each zone by interpolating functions and use the finite line method to assemble the discretized governing equations at these nodes. For the nodes at the interfaces which are shared by two or more zones, the traction-equilibrium equations and the compatibility conditions of variables are used to construct the linear algebraic equations. For the irregular geometries and the nodes where the loads jump, we add up the traction-equilibrium equations of each neighbor faces in different directions to improve the robustness of the proposed method. We use the proposed method to solve several thermal stress problems in two- and three-dimension. The results of test cases indicate that the proposed method has good accuracy and a significant priority in problems involving stress concentration. Because the collocation method is used, the stress on the boundary is more accurate.
-
Key words:
- finite line method /
- zonal method /
- collocation method /
- composite structure /
- thermal stress
-
表 1 各层的厚度与物性参数
Table 1. Thickness and physical parameters of each layer
Layer H/mm $ \mathrm{\lambda }[ $$\lambda $ /(W·m−1·K−1) E/MPa ν $\alpha / {10^{ - 6}}$ 1 5.0 20.0 10.0 0.2 0.5 2 10.0 2.0 1.0 0.1 0.1 3 10.0 10.0 20.0 0.3 1.0 -
[1] 庄茁, 柳占立, 王永亮. 页岩油气高效开发中的基础理论与关键力学问题. 力学季刊, 2015, 36(1): 11-25 (Zhuang Zhu, Liu Zhanli, Wang Yongliang. Fundamental theory and key mechanical problems of shale oil gas effective extraction. Chinese Quarterly of Mechanics, 2015, 36(1): 11-25 (in Chinese) doi: 10.15959/j.cnki.0254-0053.2015.01.002 [2] Keyes D, McInnes L, Woodward C, et al. Multiphysics simulations: challenges and opportunities. International Journal of High Performance Computing Applications, 2013, 27(1): 4-83 [3] 安效民, 徐敏, 陈士橹. 多场耦合求解非线性气动弹性的研究综述. 力学进展, 2009, 39(3): 284-298 (An Xiaomin, Xu Min, Chen Shilu. An overview of CFD/CSD coupled solution for nonlinear aeroelasticity. Advances in Mechanics, 2009, 39(3): 284-298 (in Chinese) [4] 邢景棠. 线性与非线性流固耦合动力学数值方法的进展及应用(英文). 力学进展, 2016, 46(1): 201602 (Xing Jingtang. Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications. Advances in Mechanics, 2016, 46(1): 201602 [5] 王勖成. 有限单元法. 北京: 清华大学出版社, 2003Wang Xucheng. Finite Element Method. Beijing: Tsinghua University Press, 2003 (in Chinese) [6] 查晶晶, 万德成. 用OpenFOAM实现数值水池造波和消波. 海洋工程, 2011, 29(3): 1-12 (Zha Jingjing, Wan Decheng. Numerical wave generation and absorption based on OpenFOAM. The Ocean Engineering, 2011, 29(3): 1-12 (in Chinese) [7] 岳建华, 杨海燕, 胡搏. 矿井瞬变电磁法三维时域有限差分数值模拟. 地球物理学进展, 2007(6): 1904-1909 (Yue Jianhua, Yang Haiyan, Hu Bo. 3D finite difference time domain numerical simulation for TEM in-mine. Progress in Geophysics, 2007(6): 1904-1909 (in Chinese) [8] 叶珍宝, 周海京. 高阶间断伽辽金时域有限元方法分析三维谐振腔. 计算物理, 2015, 32(4): 449-454 (Ye Zhenbao, Zhou Haijing. High-order discontinuous Galerkin time-domain finite-element method for three-dimensional cavities. Chinese Journal of Computational Physics, 2015, 32(4): 449-454 (in Chinese) [9] 高效伟, 彭海峰, 杨恺等. 高等边界单元法. 北京: 科学出版社, 2015Gao Xiaowei, Peng Haifeng, Yang Kai, et al. Advanced Boundary Element Method. Beijing: Science Press, 2014 (in Chinese) [10] Yang K, Peng HF, Wang J, et al. Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity. International Journal of Heat and Mass Transfer, 2017, 108: 1551-1559 [11] 高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法. 力学学报, 2015, 47(5): 868-873 (Gao Xiaowei, Zheng Baojing, Liu Jian. Dynamic fracture analysis of functionally graded materials by radial integration BEM. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 868-873 (in Chinese) [12] 程玉民. 无网格方法. 北京: 科学出版社, 2015 (Cheng Yumin. Meshless Method. Beijing: Science Press, 2014 (in Chinese)) [13] 王东东, 张汉杰, 梁庆文. 等几何修正准凸无网格法. 计算力学学报, 2016, 33(4): 605-612 (Wang Dongdong, Zhang Hanjie, Liang Qingwen. Isogeometric refined quasi-convex meshfree method. Chinese Journal of Computational Mechanics, 2016, 33(4): 605-612 (in Chinese) [14] 张雄, 宋康祖, 陆明万. 无网格法研究进展及其应用. 计算力学学报, 2003(6): 730-742 (Zhang Xiong, Song Kangzu, Lu Mingwan. Research progress and application of meshless method. Chinese Journal of Computational Mechanics, 2003(6): 730-742 (in Chinese) [15] 彭建新, 谢桂兰, 刘新等. 无网格Galerkin法在金属弹塑性大变形问题中的应用. 机械科学与技术, 2009, 28(9): 1248-1251 (Peng Jianxin, Xie Guilan, Liu Xin, et al. Application of meshless Galerkin method to metal elasto-plastic large deformation problems. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(9): 1248-1251 (in Chinese) [16] 程晗. 基于改进SPH方法的船体与自由面流固耦合问题研究. [博士论文]. 哈尔滨: 哈尔滨工程大学, 2020Cheng Han. Research on fluid-solid coupling between hull and free surface based on an improved SPH method. [Doctoral Thesis]. Harbin: Harbin Engineering University, 2020 (in Chinese) [17] 张涵信, 沈孟育. 计算流体力学:差分方法的原理和应用. 北京: 国防工业出版社, 2003Zhang Hanxin, Shen Mengyu. Computational Fluid Dynamics: Principles and Applications of Difference Methods. Beijing: National Defense Industry Press, 2003 (in Chinese) [18] Gao XW, Gao LF, Zhang Y, et al. Free element collocation method: A new method combining advantages of finite element and mesh free methods. Computers & Structures, 2019, 215: 10-26 [19] 高效伟, 徐兵兵, 吕军等. 自由单元法及其在结构分析中的应用. 力学学报, 2019, 51(3): 703-713 (Gao Xiaowei, Xu Bingbing, Lu Jun, et al. Free element method and its application in structural analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713 (in Chinese) [20] Liu HY, Gao XW, Xu BB. An implicit free element method for simulation of compressible flow. Computers & Fluids, 2019, 192: 104276 [21] Liu HY, Gao XW, Xu BB. A free element scheme for simulating two- and three-dimensional incompressible fluid flow. International Journal for Numerical Methods in Fluids. 2021, 93: 1163–1182. [22] Jun L, Shao MJ, Xue YT, et al. A new strong form technique for Thermo-Electro-Mechanical behaviors of piezoelectric solids. Coatings, 2021, 11(6): 687 doi: 10.3390/coatings11060687 [23] Gao XW, Liu HY, Ruan B. Discontinuous zone free element method with variable condensation and applications in thermal-stress analysis of functionally graded material structures with cracks. Computers & Structures, 2021, 243: 106411 [24] Gao XW, Zhu YM, Pan T. Finite line method for solving high-order partial differential equations in science and engineering. Partial Differential Equations in Applied Mathematics, 2023, 7: 100477 doi: 10.1016/j.padiff.2022.100477 [25] Gao XW. Cross-lines method for solving heat conduction problems, lecture notes in mechanical engineering//Proceedings of International Conference on Advanced Mechanical and Power Engineering (CAMPE-2021), online (Kharkiv, Ukraine), 2021. Switzerland: Springer, 2022. 343-353 [26] 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用. 物理学报, 2022, 71(19): 190201 (Gao Xiaowei, Ding Jinxing, Liu Huayu. Finite line method and its application in coupled heat transfer between fluid-solid domains. Acta Phys, 2022, 71(19): 190201 (in Chinese) [27] Wang DD, Wang JR, Wu JC. Superconvergent gradient smoothing meshfree collocation method. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 728-766 doi: 10.1016/j.cma.2018.06.021 [28] 樊礼恒, 王东东, 刘宇翔等. 节点梯度光滑有限元配点法. 力学学报, 2021, 53(2): 467-481 (Fan Liheng, Wang Dongdong, Liu Yuxiang, et al. A finite element collocation method with smoothed nodal gradients. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481 (in Chinese) doi: 10.6052/0459-1879-20-361 [29] 邓立克, 王东东, 王家睿等. 薄板分析的线性基梯度光滑伽辽金无网格法. 力学学报, 2019, 51(3): 690-702 (Deng Like, Wang Dongdong, Wang Jiarui, et al. A gradient smoothing Galerkin meshfree method for thin plate analysis with linear basis function. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702 (in Chinese) doi: 10.6052/0459-1879-19-004 [30] Gao XW, Liang Y, Xu BB. Cross-line elements for free element method in thermal and mechanical analyses of functionally gradient materials. Engineering Analysis with Boundary Elements, 2019, 108(11): 422-437 -