EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强脉冲载荷作用下结构塑性大变形的最大挠度直接预测

余同希 田岚仁 朱凌

余同希, 田岚仁, 朱凌. 强脉冲载荷作用下结构塑性大变形的最大挠度直接预测. 力学学报, 2023, 55(5): 1113-1123 doi: 10.6052/0459-1879-22-607
引用本文: 余同希, 田岚仁, 朱凌. 强脉冲载荷作用下结构塑性大变形的最大挠度直接预测. 力学学报, 2023, 55(5): 1113-1123 doi: 10.6052/0459-1879-22-607
Yu Tongxi, Tian Lanren, Zhu Ling. Direct prediction of maximum deflection for plastically deformed structures under intense dynamic pulse. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1113-1123 doi: 10.6052/0459-1879-22-607
Citation: Yu Tongxi, Tian Lanren, Zhu Ling. Direct prediction of maximum deflection for plastically deformed structures under intense dynamic pulse. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1113-1123 doi: 10.6052/0459-1879-22-607

强脉冲载荷作用下结构塑性大变形的最大挠度直接预测

doi: 10.6052/0459-1879-22-607
基金项目: 国家自然科学基金资助项目(12172265, 51579199)
详细信息
    通讯作者:

    朱凌, 教授, 主要研究方向为结构冲击动力学. E-mail: Lingzhu@whut.edu.cn

  • 中图分类号: O383

DIRECT PREDICTION OF MAXIMUM DEFLECTION FOR PLASTICALLY DEFORMED STRUCTURES UNDER INTENSE DYNAMIC PULSE

  • 摘要: 经过多年的研究, 由中国学者提出和研发的膜力因子法和饱和分析方法已被证明是分析和预测冲击、爆炸等强动载荷作用下梁、板等结构件的塑性大变形行为的有力工具. 在这两套理论工具相结合所获得的一系列最新成果的基础上, 文章提出一种对梁和板在强脉冲作用下的最大挠度的直接预测方法. 考虑了膜力和弯矩相互作用的准确屈服条件, 同时假定位移场近似地按照与准静态破损机构相似的模态发生变化, 该方法直接从膜力因子的表达式出发, 依据外载作的功与塑性耗散相等的能量条件, 只需要求解初等方程就可以简单明晰地得到梁和板在矩形脉冲作用下的最大挠度, 极大地简化了数学推导. 与同时考虑准确屈服条件和瞬态响应阶段的完全解以及具有上下界的模态解相比, 这一方法能够同样准确但更简单地计入膜力对结构大变形承载能力的效应, 为工程设计提供比完全解更简明、比模态解更精准的梁和板最大塑性变形的估算公式; 再同改进的脉冲等效技术相结合, 这种直接预测方法有望进一步拓展到更复杂的结构件, 获得广泛的工程应用.

     

  • 图  1  外载作用下的梁或板

    Figure  1.  Beam or plate under lateral loading

    图  2  弯矩与轴力的交互作用屈服面及与之关联的流动法则

    Figure  2.  Interactive yield locus between bending moment and axial force and its associated flow rule

    图  3  边界为简支可移和简支不可移的圆板的膜力因子fn 随板中点的无量纲挠度的变化 , 同时也代表了圆板的承载能力在大挠度变形过程中的变化

    Figure  3.  Variation of membrane factor fn of circular plates (with movable simply supported and immovable simply supported boundaries) with the dimensionless central deflection; it also represents the variation of the load-carrying capacity of circular plates during large deformation

    图  4  均布矩形脉冲载荷作用下的固支方板

    Figure  4.  Fully clamped square plate under uniformly distributed rectangular pulse loading

    图  5  均布脉冲载荷下方板的固定变形模态

    Figure  5.  Time-independent deformation mode of a square plate under uniformly distributed pulse loading

    图  6  载荷−挠度曲线及内外功平衡示意图

    Figure  6.  Load-deflection curve and a sketch on internal and external power balance

    图  7  固支梁的无量纲最大挠度随载荷幅值的变化

    Figure  7.  Dimensionless maximum deflection varies with dimensionless pulse amplitude for fully clamped beams

    图  8  简支梁的无量纲最大挠度随载荷幅值的变化

    Figure  8.  Dimensionless maximum deflection varies with dimensionless pulse amplitude for simply supported beams

    图  9  固支方板的无量纲最大挠度随载荷幅值的变化

    Figure  9.  Dimensionless maximum deflection varies with dimensionless pulse amplitude for fully clamped square plates

    图  10  脉冲的等效替代示意图

    Figure  10.  Equivalent substitution of loading pulse

    表  1  分析梁和板塑性大变形的几类方法

    Table  1.   Comparison of several methods for analyzing large plastic deformation of beams and plates

    MethodSaturation analysis (SA)Membrane factor method (MFM)Finite element method (FEM)
    Material modeRigid-perfectly plastic (R-PP)Rigid-perfectly plastic (R-PP)Elastic-perfectly plastic (E-PP) or Elastic-plastic
    Applicable objectsDynamic large deformationQuasi-static or dynamic large deformationQuasi-static or dynamic large deformation
    Deformation modeModal deformation fieldTransient and modal deformation fieldTransient deformation field
    Yield surfaceCircumscribed and inscribed square limit surfacesExact limit surfaceExact limit surface
    Main resultsThe upper and lower bounds of the maximum
    deflection and its dependence on
    external loading parameters
    Maximum deflection and its dependence on external loading parametersMaximum and final deflection, but each
    set of loading parameters needs to be calculated
    one by one
    下载: 导出CSV

    表  2  梁和板的膜力因子一览

    Table  2.   Membrane factors for beams and plates

    Structure and boundary conditionsMembrane factor ${f_n}$Reference
    Finite length beam, simply supported, axial immovable$\left\{ \begin{gathered} 1 + 4{\delta ^2}\;\;\;\;(\delta \leqslant 1/2) \\ 4\delta \;\;\;\;\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1/2) \\ \end{gathered} \right.$Chen et al.[10]
    Finite length beam, fully clamped, axial immovable$\left\{ \begin{gathered} 1 + {\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;(\delta \leqslant 1) \\ 2\delta \;\;\;\;\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1) \\ \end{gathered} \right.$Chen et al.[10]
    Infinite beam, local deformation$\left\{ \begin{gathered} 1 + {\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;(\delta \leqslant 1) \\ 2\delta \;\;\;\;\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1) \\ \end{gathered} \right.$Yu et al.[6]
    Circular plate, simply supported, radially movable$\left\{ \begin{gathered} 1 + \frac{1}{3}{\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;(\delta \leqslant 1) \\ \delta + \frac{1}{{3\delta }}\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1) \\ \end{gathered} \right.$Calladine[11]
    , Kondo et al.[12]
    Circular plate, simply supported, radially immovable$\left\{ \begin{gathered} 1 + \frac{4}{3}{\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;\;{\kern 1 pt} {\kern 1 pt} (\delta \leqslant 1/2) \\ 2\delta + \frac{1}{{6\delta }}\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1/2) \\ \end{gathered} \right.$Yu et al.[7]
    Circular plate, fully clamped$ \left\{ \begin{gathered} 1 + \frac{1}{2}{\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;(\delta \leqslant 1) \\ \delta + \frac{1}{{2\delta }}\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1) \\ \end{gathered} \right. $Yu et al.[7]
    Square plate, simply supported$\left\{ \begin{gathered} 1 + \frac{4}{3}{\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;\;{\kern 1 pt} {\kern 1 pt} (\delta \leqslant 1/2) \\ 2\delta + \frac{1}{{6\delta }}\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1/2) \\ \end{gathered} \right.$Chen et al.[8]
    Square plate, fully clamped$ \left\{ \begin{gathered} 1 + \frac{1}{2}{\delta ^2}\;\;\;{\kern 1 pt} {\kern 1 pt} \;\;(\delta \leqslant 1) \\ \delta + \frac{1}{{2\delta }}\;\;\;\;\;{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} (\delta \geqslant 1) \\ \end{gathered} \right. $Chen et al.[8]
    下载: 导出CSV

    表  3  按式(14)及式(16)或式(18)计算得到的固支梁的最大挠度

    Table  3.   The maximum deflection of fully clamped beam calculated by Eq. (14) and Eq. (16) or Eq. (18)

    $\lambda $11.24/31.524610
    ${\delta _s}$
    (14)&(16)
    00.7751.0001.2291.8173.9155.9449.967
    ${\delta _s}$
    (14)&(18)
    00.7751.0831.2781.8333.9175.9449.967
    下载: 导出CSV
  • [1] Lee EH, Symonds PS. Large plastic deformations of beams under transverse impact. Journal of Applied Mechanics, 1952, 19: 308-314 doi: 10.1115/1.4010503
    [2] Parkes EW. The permanent deformation of a cantilever struck transversely at its tip. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955, 228(1175): 462-476
    [3] Symonds PS, Mentel TS. Impulsive loading of plastic beams with axial constraints. Journal of the Mechanics and Physics of Solids, 1958, 6: 186-202 doi: 10.1016/0022-5096(58)90025-5
    [4] Symonds PS, Jones N. Impulsive loading of fully clamped beams with finite plastic deflections and strain-rate sensitivity. International Journal of Mechanical Sciences, 1972, 14: 49-69 doi: 10.1016/0020-7403(72)90006-9
    [5] Jones N. Structural Impact, 2nd edition. Cambridge: Cambridge University Press, 2012
    [6] Yu TX, Stronge WJ. Large deflection of a rigid-plastic beam-on-foundation from impact. International Journal of Impact Engineering, 1990, 9(1): 115-126
    [7] 余同希, 陈发良. 用“膜力因子法”分析简支刚塑性圆板的大挠度动力响应. 力学学报, 1990, 22(5): 555-565

    Yu Tongxi, Chen Faliang. Analysis of the large deflection dynamic response of simply-supported circular plates by the “membrane factor method”. Acta Mechanica Sinica, 1990, 22(5): 555-565 (in Chinese)
    [8] 陈发良, 余同希. 正多边形板的塑性动力响应—小挠度分析和大挠度分析, 爆炸与冲击, 1991, 11(2): 105-116

    (Chen Faliang, Yu Tongxi. Dynamic plastic response of regular polygonal plates. Explosion and Shock Waves, 1991, 11(2): 105-116 (in Chinese))
    [9] Yu TX, Chen FL. The large deflection dynamic response of rectangular plates. International Journal of Impact Engineering, 1992, 12(4): 603-616
    [10] Chen FL, Yu TX. Analysis of large deflection dynamic response of rigid-plastic beams. ASCE Journal of Engineering Mechanics, 1993, 119: 1293-1301
    [11] Calladine CR. Simple ideas in the large-deflection plastic theory of plates and slabs//Heyman J, Leekie FA, eds. Engineering Plasticity. Cambridge: Cambridge University Press, 1968: 93-127
    [12] Kondo K, Pian THH. Large deformation of rigid-plastic circular plates. International Journal of Solids and Structures, 1981, 17: 1043-1055
    [13] Qin QH, Wang TJ. Analytical solution for the large deflection of fully clamped metallic foam sandwich beam. Advanced Materials Research, 2008, 33-37: 559-566 doi: 10.4028/www.scientific.net/AMR.33-37.559
    [14] Qin QH, Wang TJ, Zhao SZ. Large deflections of metallic sandwich and monolithic beams under locally impulsive loading. International Journal of Mechanical Sciences, 2009, 51: 752-773 doi: 10.1016/j.ijmecsci.2009.08.008
    [15] Qin QH, Wang TJ. A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading. European Journal of Mechanics A/Solids, 2009, 28: 1014-1025 doi: 10.1016/j.euromechsol.2009.04.002
    [16] Jones N. Slamming damage. Journal of Ship Research, 1973, 17(2): 80-86 doi: 10.5957/jsr.1973.17.2.80
    [17] Zhao YP, Yu TX, Fang J. Large dynamic plastic deflection of a simply supported beam subjected to rectangular pressure pulse. Archive of Applied Mechanics, 1994, 64(3): 223-232 doi: 10.1007/BF00806819
    [18] Zhao YP, Yu TX, Fang J. Saturated impulses for dynamically loaded structures with finite-deflections. Structural Engineering and Mechanics, 1995, 3(6): 583-592 doi: 10.12989/sem.1995.3.6.583
    [19] Zhu L, Yu TX. Saturated impulse for pulse-loaded elastic-plastic square plates. International Journal of Solids and Structures, 1997, 34(14): 1709-1718 doi: 10.1016/S0020-7683(96)00111-4
    [20] Bai XY, Zhu L, Yu TX. Saturated impulse for pulse-loaded rectangular plates with various boundary conditions. Thin-Walled Structures, 2017, 119: 166-177 doi: 10.1016/j.tws.2017.03.030
    [21] Zhu L, Bai XY, Yu TX. The saturated impulse of fully clamped square plates subjected to linearly decaying pressure pulse. International Journal of Impact Engineering, 2017, 110: 198-207 doi: 10.1016/j.ijimpeng.2016.12.012
    [22] Bai XY, Zhu L, Yu TX. Saturated impulse for fully clamped square plates under blast loading. International Journal of Mechanical Sciences, 2018, 146-147: 417-431 doi: 10.1016/j.ijmecsci.2017.08.047
    [23] Tian LR, Chen FL, Zhu L, et al. Saturated analysis of pulse-loaded beams based on membrane factor method. International Journal of Impact Engineering, 2019, 131: 17-26
    [24] Tian LR, Chen FL, Zhu L, et al. Large deformation of square plates under pulse loading by the combination of saturated analysis and membrane factor method. International Journal of Impact Engineering, 2020, 140: 103546 doi: 10.1016/j.ijimpeng.2019.04.021
    [25] Chen FL, Tian LR, Yu TX, et al. Complete solution of large plastic deformation of square plates under exponentially decaying pulse loading. Acta Mechanica Solida Sinica, 2021, 34(6): 922-936 doi: 10.1007/s10338-021-00280-6
    [26] Zhu L. Transient deformation modes of square plates subjected to explosive loadings. International Journal of Solids and Structures, 1996, 33(3): 301-314 doi: 10.1016/0020-7683(95)00037-B
    [27] 余同希, 薛璞. 工程塑性力学. 北京: 高等教育出版社, 2010

    Yu Tongxi, Xue Pu. Engineering Plasticity. Beijing: Higher Education Press, 2010 (in Chinese))
    [28] 余同希, 朱凌, 陈发良. 饱和冲量与膜力因子法−强动载荷下结构塑性大变形的分析和预测方法//陈建康, 白树林编. 材料的非线性力学性能研究进展, 北京: 机械工业出版社, 2021: 17-29

    Yu Tongxi, Zhu Ling, Chen Faliang. Saturated impulse and membrane factor method-analysis and prediction of large plastic deformation of structures under intense dynamic loading//Chen Jiankang, Bai Shulin, eds. Research Progress in Non-Linear Mechanical Properties of Materials. Beijing: Machine-building Industry Press, 2021:17-29 (in Chinese)
    [29] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020). 爆炸与冲击, 2021, 41(12): 1-61

    Yu Tongxi, Zhu Ling, Xu Jun. Progress in structural impact dynamics (2010-2020). Explosion and Shock Waves, 2021, 41(12): 1-61 (in Chinese))
    [30] Youngdahl CK. Correlation parameters for eliminating the effect of pulse shape on dynamic plastic deformation. Journal of Applied Mechanics, 1970, 37(3): 744-752 doi: 10.1115/1.3408605
    [31] Zhu L, Tian LR, Chen FL, et al. A new equivalent method for complex- shaped pulse loading based on saturation analysis and membrane factor method. International Journal of Impact Engineering, 2021, 158: 104018 doi: 10.1016/j.ijimpeng.2021.104018
    [32] Hu QJ, Zhu L, Yu TX. Elastic effects on the dynamic plastic deflection of pulse-loaded beams. International Journal of Impact Engineering, 2023, 176: 104550 doi: 10.1016/j.ijimpeng.2023.104550
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  93
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 录用日期:  2023-03-29
  • 网络出版日期:  2023-03-30
  • 刊出日期:  2023-05-18

目录

    /

    返回文章
    返回