EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速稀薄流中横向喷流干扰特性实验研究

卓越 罗凯 尚甲豪 于庆豪 汪球 王业军 梁金虎 赵伟

卓越, 罗凯, 尚甲豪, 于庆豪, 汪球, 王业军, 梁金虎, 赵伟. 高超声速稀薄流中横向喷流干扰特性实验研究. 力学学报, 2023, 55(5): 1053-1062 doi: 10.6052/0459-1879-22-599
引用本文: 卓越, 罗凯, 尚甲豪, 于庆豪, 汪球, 王业军, 梁金虎, 赵伟. 高超声速稀薄流中横向喷流干扰特性实验研究. 力学学报, 2023, 55(5): 1053-1062 doi: 10.6052/0459-1879-22-599
Zhuo Yue, Luo Kai, Shang Jiahao, Yu Qinghao, Wang Qiu, Wang Yejun, Liang Jinhu, Zhao Wei. Experimental study on the characterization of transverse jet interaction in hypersonic rarefied flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1053-1062 doi: 10.6052/0459-1879-22-599
Citation: Zhuo Yue, Luo Kai, Shang Jiahao, Yu Qinghao, Wang Qiu, Wang Yejun, Liang Jinhu, Zhao Wei. Experimental study on the characterization of transverse jet interaction in hypersonic rarefied flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1053-1062 doi: 10.6052/0459-1879-22-599

高超声速稀薄流中横向喷流干扰特性实验研究

doi: 10.6052/0459-1879-22-599
基金项目: 国家自然科学基金(12072353, 12272386)和中国科学院青年创新促进会(2021020)资助项目
详细信息
    通讯作者:

    王业军, 副研究员, 主要研究方向为高超声速流动与激光测试技术. E-mail: wangyejun@imech.ac.cn

  • 中图分类号: V211.751

EXPERIMENTAL STUDY ON THE CHARACTERIZATION OF TRANSVERSE JET INTERACTION IN HYPERSONIC RAREFIED FLOW

  • 摘要: 喷流干扰是高超声速飞行高精度控制的一种有效手段, 研究者们以往大部分都主要集中于连续流条件下喷流干扰效应的机理研究, 并给出了喷流干扰流场的典型结构, 而稀薄流条件下喷流干扰特性的实验数据还十分匮乏. 本文利用JFX爆轰激波风洞产生高超声速稀薄自由流, 基于平板模型开展不同喷流压力和自由来流参数对横向喷流干扰特性影响的实验研究, 采用高速纹影成像及图像处理技术, 获得稀薄流条件下喷流干扰流场演化过程及流场结构的变化规律. 相比于无喷流条件形成的流场, 横向喷流与稀薄自由流相互作用形成的流场结构更为复杂, 喷流压力由于受到稀薄来流的扰动, 斜激波会短暂穿透喷流干扰流场并延伸至楔形体上部. 喷流干扰流场内桶状激波的影响范围随着喷流压力的升高而逐渐变宽, 位于三波点上游的斜激波空间位置不会随喷流压力的变化而改变, 而位于三波点下游的弓形激波则向上游移动, 当喷流压力过低时, 桶状激波不会与其他两种激波交汇形成三波点. 高超声速稀薄来流压力的降低同样会使桶状激波的影响范围变宽, 弓形激波同样也会向上游移动, 但基本不会对斜激波空间位置产生任何影响.

     

  • 图  1  JFX激波风洞结构示意图

    Figure  1.  Schematic of JFX shock tunnel structure

    图  2  喷管出口处皮托压力曲线

    Figure  2.  Pitot pressure curve at nozzle exit

    图  3  平板模型结构示意图

    Figure  3.  Schematic of the flat panel model

    图  4  喷流及皮托压力变化曲线

    Figure  4.  Pressure curves of jet and Pitot

    图  5  反射式纹影成像示意图

    Figure  5.  Schematic of reflective schlieren imaging

    图  6  喷流干扰流场的(a)演化过程及(b)典型结构

    Figure  6.  (a) Evolution and (b) typical structure of transverse jet interaction flowfield

    图  7  不同高度条件下喷流干扰流场图像强度随时间变化过程

    Figure  7.  Time-varying intensity of transverse jet interaction flowfield at different heights

    图  8  喷流干扰流场在y = 2.35 mm处的(a)强度曲线、(b)极值曲线以及(c)桶状激波水平位置随时间的变化曲线

    Figure  8.  Curves of (a) intensity, (b) absolute extremum and (c) time-varying horizontal position of barrel shock of transverse jet interaction flowfield at a height of 2.35 mm

    图  9  计算获得的流场激波空间位置与纹影图像对比

    Figure  9.  Comparison of calculated spatial positions of shock waves with schlieren imaging

    图  10  有无喷流条件下喷流干扰流场结构纹影图

    Figure  10.  Schlieren images of flowfield structures without and with jet

    图  11  有无喷流条件下流场强度随时间变化过程

    Figure  11.  Time-varying intensity of flowfield at different heights without and with jet

    图  12  有无喷流条件下流场内激波空间位置曲线

    Figure  12.  Spatial position curves of shock waves of flowfield without and with jet

    图  13  不同喷流压力条件下喷流干扰流场内激波空间位置曲线

    Figure  13.  Spatial position curves of shock waves of transverse jet interaction flowfield with different jet pressures

    图  14  楔形体表面压力变化曲线

    Figure  14.  Variation of surface pressure of the wedge model

    图  15  不同来流条件下喷流干扰流场结构

    Figure  15.  Schlieren images of transverse jet interaction flowfield under different freestream conditions

    图  16  不同来流工况下喷流干扰流场强度随时间变化过程

    Figure  16.  Time-varying intensity of transverse jet interaction flowfield with different heights under various freestream condition

    图  17  不同来流条件下喷流干扰流场内激波空间位置曲线

    Figure  17.  Spatial position curves of shock waves of transverse jet interaction flowfield under different freestream conditions

    表  1  实验采用的三种工况气流参数

    Table  1.   Parameters for three operational cases in experiments

    P1/
    MPa
    T0/
    K
    P0/
    MPa
    P/
    Pa
    T/
    K
    V /
    (m·s−1)
    ρ /
    (kg·m−3)
    MaKn
    Case10.528833.2140350932282.16×10−36.440.0003
    Case20.127110.618045131174.78×10−46.520.0014
    Case30.0526370.304242130412.63×10−46.540.0025
    下载: 导出CSV
  • [1] Jackson HH. Longitudinal aerodynamic characteristics and effect of rocket jet on drag of models of the hermes A-3 A and A-3 B missiles in free flight at Mach numbers from 0.6 to 2.0. NACA report No. NACA-RM-SL55 F15, 1955
    [2] Dong M, Liao J, Du Z, et al. Influences of lateral jet location and its number on the drag reduction of a blunted body in supersonic flows. The Aeronautical Journal, 2020, 124(1277): 1055-1069 doi: 10.1017/aer.2020.4
    [3] Ji C, Liu B, Huang W, et al. Investigation on the drag reduction and thermal protection properties of the porous opposing jet in the supersonic flow: A parametric study with constant mass flow rate. Aerospace Science and Technology, 2021, 118: 107064 doi: 10.1016/j.ast.2021.107064
    [4] 唐志共, 杨彦广, 刘君等. 横向喷流干扰/控制研究进展. 实验流体力学, 2010, 24(4): 1-6 (Tang Zhigong, Yang Yanguang, Liu Jun, et al. The investigation and expectation on lateral jet interference/control. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 1-6 (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.04.001
    [5] 许晨豪, 蒋崇文, 高振勋等. 高超声速飞行器反作用控制系统喷流干扰综述. 力学与实践, 2014, 36(2): 147-155, 160 (Xu Chenhao, Jiang Chongwen, Gao Zhenxun et al. The jet interaction effects of reaction contaol systems in hypersonic vehicles. Mechanics in Engineering, 2014, 36(2): 147-155, 160 (in Chinese)
    [6] Gilman BG. Control jet interaction investigation. Journal of Spacecraft and Rockets, 1971, 8(4): 334-339 doi: 10.2514/3.30275
    [7] Cubbison RW, Anderson BH, Ward JJ. Surface pressure distributions with a sonic jet normal to adjacent flat surfaces at Mach 2.92 to 6.4//National Aeronautics and Space Administration, 1961
    [8] Spaid FW, Cassel LA. Aerodynamic interference induced by reaction controls. AGARD-AG-173, 1973
    [9] Srivastava B. Computational analysis and validation for lateral jet-controlled missiles. Journal of Spacecraft and Rockets, 1997, 34(5): 584-592 doi: 10.2514/2.3272
    [10] Haidinger F, Weiland C. Jet/airflow interaction study on a non-winged reentry vehicle at supersonic speed//35th Aerospace Sciences Meeting and Exhibit. 1997: 409
    [11] Gilmore M, Warburton K. Axisymmetric hypersonic jet interaction. II-a combined experimental and computational study//33rd Aerospace Sciences Meeting and Exhibit. 1995: 414
    [12] 李素循. 近空间飞行器的气动复合控制原理及研究进展. 力学进展, 2009, 39(6): 740-755 (Li Suxun. Progress in aerodynamics of combination control for vehicles at high speed. Advances in Mechanics, 2009, 39(6): 740-755 (in Chinese)
    [13] 梁杰, 阎超, 李志辉等. 稀薄过渡流区横向喷流干扰效应数值模拟研究. 空气动力学学报, 2013, 31(1): 29-35 (Liang Jie, Yan Chao, Li Zhihui, et al. Numerical simulation of transverse jet interference effects in the rarefied transition flow region. Acta Aerodynamica Sinica, 2013, 31(1): 29-35 (in Chinese)
    [14] 张智勇, 张艳. 稀薄气体环境对逆向喷流的减阻和防热效果的影响. 东南大学学报(自然科学版), 2022, 52(3): 594-601 (Zhang Zhiyong, Zhang Yan. Influence of rarefied gas environment on the drag and heat reduction effect of opposing jet. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 594-601 (in Chinese)
    [15] 陈雪冬, 王发民, 唐贵明. 高温燃气喷流/主流相互干扰实验研究. 力学学报, 2012, 44(2): 230-237 (Chen Xuedong, Wang Famin, Tang Guiming. The investigation of experimental technique for high temperature gas jet flow test in impulse wind tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237 (in Chinese)
    [16] 陈雪冬, 王发民, 唐贵明. 脉冲风洞热喷流实验方法初步研究. 实验流体力学, 2012, 26(3): 68-73 (Chen Xuedong, Wang Famin, Tang Guiming. Investgation of experimental technique for high-temperature jet flow test in impulse wind tunnel. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 68-73 (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.03.012
    [17] 李洁, 石于中, 徐振富等. 高超声速稀薄流的气粒多相流动DSMC算法建模研究. 空气动力学学报, 2012, 30(1): 95-100 (Li Jie, Shi Yuzhong, Xu Zhenfu, et al. Study of DSMC algorithm and model for hypersonic multiphase rarefied flow. Acta Aerodynamica Sinica, 2012, 30(1): 95-100 (in Chinese)
    [18] 靳旭红, 黄飞, 程晓丽等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟. 航空动力学报, 2019, 34(1): 208-216 (Jin Xuhong, Huang Fei, Cheng Xiaoli, et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime. Journal of Aerospace Power, 2019, 34(1): 208-216 (in Chinese)
    [19] 李洁, 陈伟芳, 任兵. 二维过渡区喷流干扰流场的DSMC/EPS仿真. 推进技术, 2003, 24(6): 495-499 (Li Jie, Chen Weifang, Ren Bing. Numerical study on chemical reactive jet interaction flows in the two-dimensional transitional regime by DSMC/EPSM method. Journal of Propulsion Technology, 2003, 24(6): 495-499 (in Chinese)
    [20] 梁杰, 阎超, 杨彦广等. 过渡区侧向喷流干扰的并行DSMC数值模拟研究. 宇航学报, 2011, 32(5): 1012-1018 (Liang Jie, Yan Chao, Yang Yanguang, et al. Parallel DSMC simulation of lateral jet interaction in rarefied transitional region. Acta Astronautica, 2011, 32(5): 1012-1018 (in Chinese)
    [21] Zhuang H, Ding D, Chen H, et al. Effectiveness of reaction control system in hypersonic rarefied reactive flow. Journal of Spacecraft and Rockets, 2022, 59(3): 717-727 doi: 10.2514/1.A35187
    [22] 靳旭红, 黄飞, 程晓丽等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟. 航空动力学报, 2019, 34(1): 201-209 (Jin Xuhong, Huang Fei, Cheng Xiaoli, et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime. Journal of Aerospace Power, 2019, 34(1): 201-209 (in Chinese)
    [23] 王树军, 胡俊, 吴甲生等. 旋转导弹横向喷流/外流干扰的数值模拟研究. 系统仿真学报, 2009, 21(11): 3472-3475, 3478 (Wang Shujun, Hu Jun, Wu Jiasheng, et al. Numerical simulation of interaction between lateral jet and external flow over spinning missile. Journal of System Simulation, 2009, 21(11): 3472-3475, 3478 (in Chinese)
    [24] 黄琳, 聂万胜, 陈伟芳. 姿控发动机高空羽流流场干扰效应的DSMC方法研究. 空气动力学学报, 2003, 21(1): 104-108 (Huang Lin, Nie Wansheng, Chen Weifang. Studying of multiplume interference effects for attitude control thruster with DSMC method. Acta Aerodynamica Sinica, 2003, 21(1): 104-108 (in Chinese)
    [25] Cecil E, McDaniel J. Planar velocity and temperature measurements in rarefied hypersonic flow using iodine LIF//38th AIAA Thermophysics Conference. Toronto, 2005: 4695
    [26] Reed EM. Planar laser induced iodine fluorescence for the invesitgation of the aerodynamics of reaction control system jets on mars-entry aeroshells. [PhD Thesis]. Charlottesville: University of Virginia, 2013
    [27] Reed E, Alkandry HI, Codoni J, et al. Investigation of the interactions of reaction control systems with mars science laboratory aeroshell //48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, 2010: 1558
    [28] Liang J, Li Z, Li X, et al. DSMC numerical simulation of lateral jet interaction with rarefied atmosphere. American Institute of Physics, 2014, 1628(1): 589-595
    [29] 李进平, 张仕忠, 于江鹏等. 以高温燃气为试验介质的爆轰波风洞. 气体物理, 2018, 3(6): 1-8 (Li Jinping, Zhang Shizhong, Yu Jiangpeng et al. A detonation tunnel with high temperature burnt gas test medium. Physics of Gases, 2018, 3(6): 1-8 (in Chinese)
    [30] 杨彦广, 刘君. 高超声速主流中横向喷流干扰非定常特性研究. 空气动力学学报, 2004, 22(3): 295-302 (Yang Yanguang, Liu jun. Unsteady characteristic research of lateral jet in hypersonic external flow. Acta Aerodynamica Sinica, 2004, 22(3): 295-302 (in Chinese)
    [31] Viti V, Neel R, Schetz JA. Detailed flow physics of the supersonic jet interaction flow field. Physics of Fluids, 2009, 21(4): 046101 doi: 10.1063/1.3112736
    [32] 余生晨, 刘大有, 孙莉民. 一阶方向导数极值法—一种检测边缘的新方法. 计算机研究与发展, 2000, 37(2): 244-247 (Yu Shengchen, Liu Dayou, Sun Limin. Method using extremum of first directional derivative—a new method for edge detection. Journal of Computer Research and Development, 2000, 37(2): 244-247 (in Chinese)
    [33] 张杰, 高振勋, 李椿萱. 后拐板对高超声速层流来流/声速喷流干扰流动的影响//第十四届全国激波与激波管学术会议论文集(下册). 2010: 145-152

    Zhang Jie, Gao Zhenxun, Li Chunxuan Effects of back-ramp to the interaction flow of hypersonic laminar freee-stream and sonic jet//Proceedings of the 14th National Shock and Shock Tube Academic Conference (Volume II). 2010: 145-152 (in Chinese)
    [34] Gochberg LA. Electron beam fluorescence methods in hypersonic aerothermodynamics. Progress in Aerospace Sciences, 1997, 33(7-8): 431-480 doi: 10.1016/S0376-0421(97)00002-X
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  77
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-22
  • 录用日期:  2023-02-03
  • 网络出版日期:  2023-02-04
  • 刊出日期:  2023-05-18

目录

    /

    返回文章
    返回