EXPERIMENTAL STUDY ON THE CHARACTERIZATION OF TRANSVERSE JET INTERACTION IN HYPERSONIC RAREFIED FLOW
-
摘要: 喷流干扰是高超声速飞行高精度控制的一种有效手段, 研究者们以往大部分都主要集中于连续流条件下喷流干扰效应的机理研究, 并给出了喷流干扰流场的典型结构, 而稀薄流条件下喷流干扰特性的实验数据还十分匮乏. 本文利用JFX爆轰激波风洞产生高超声速稀薄自由流, 基于平板模型开展不同喷流压力和自由来流参数对横向喷流干扰特性影响的实验研究, 采用高速纹影成像及图像处理技术, 获得稀薄流条件下喷流干扰流场演化过程及流场结构的变化规律. 相比于无喷流条件形成的流场, 横向喷流与稀薄自由流相互作用形成的流场结构更为复杂, 喷流压力由于受到稀薄来流的扰动, 斜激波会短暂穿透喷流干扰流场并延伸至楔形体上部. 喷流干扰流场内桶状激波的影响范围随着喷流压力的升高而逐渐变宽, 位于三波点上游的斜激波空间位置不会随喷流压力的变化而改变, 而位于三波点下游的弓形激波则向上游移动, 当喷流压力过低时, 桶状激波不会与其他两种激波交汇形成三波点. 高超声速稀薄来流压力的降低同样会使桶状激波的影响范围变宽, 弓形激波同样也会向上游移动, 但基本不会对斜激波空间位置产生任何影响.Abstract: Jet interaction is an effective approach for hypersonic flight controls with higher agility and improved maneuverability. Previous researches are mainly focused on the mechanisms of jet interaction effects in continuous region, classical flowfield structures of jet interaction based on different models have been proposed theoretically, on the other hand, scarce experimental data on characterizations of jet interaction in rarefied region exist. Therefore, the objective of this work aims to experimentally investigate the effects of jet pressure and hypersonic rarefied flow condition on the characterizations of transverse jet interaction based on a flat plate model, whereas hypersonic rarefied flows are generated in a JFX detonation shock tunnel. Evolution and typical structure of transverse jet interaction in hypersonic rarefied flow are recorded using high-speed schlieren imaging approach, and variations of spatial positions of different shock waves are analyzed using imaging process technique. Compared to the flowfield without the presence of jet flow, the interaction between jet flow and hypersonic rarefied flow makes the flowfield much more complex. Oblique shock could instantaneously penetrate through the flowfield of jet interaction due to the pressure fluctuation of jet flow caused by the incoming flow. With increasing the jet pressure, the affecting region of the barrel shock gradually becomes broader. The spatial position of the oblique shock wave in the upstream of the triple point barely changes with an increase in the jet pressure, while in the downstream of the triple point, the bow shock moves upstream with increasing pressure. The spatial position of the barrel shock would not overlap with the other two when the jet pressure is low. The pressure reduction of the incoming hypersonic rarefied flow can broaden the affecting region of the barrel shock and thus move the bow shock upstream as well, but it has little influence on the spatial position of the oblique shock wave.
-
Key words:
- transverse jet interaction /
- hypersonic flow /
- rarefied flow /
- shock tunnel
-
表 1 实验采用的三种工况气流参数
Table 1. Parameters for three operational cases in experiments
P1/
MPaT0/
KP0/
MPaP∞/
PaT∞/
KV∞ /
(m·s−1)ρ∞ /
(kg·m−3)Ma Kn Case1 0.5 2883 3.21 403 509 3228 2.16×10−3 6.44 0.0003 Case2 0.1 2711 0.61 80 451 3117 4.78×10−4 6.52 0.0014 Case3 0.05 2637 0.30 42 421 3041 2.63×10−4 6.54 0.0025 -
[1] Jackson HH. Longitudinal aerodynamic characteristics and effect of rocket jet on drag of models of the hermes A-3 A and A-3 B missiles in free flight at Mach numbers from 0.6 to 2.0. NACA report No. NACA-RM-SL55 F15, 1955 [2] Dong M, Liao J, Du Z, et al. Influences of lateral jet location and its number on the drag reduction of a blunted body in supersonic flows. The Aeronautical Journal, 2020, 124(1277): 1055-1069 doi: 10.1017/aer.2020.4 [3] Ji C, Liu B, Huang W, et al. Investigation on the drag reduction and thermal protection properties of the porous opposing jet in the supersonic flow: A parametric study with constant mass flow rate. Aerospace Science and Technology, 2021, 118: 107064 doi: 10.1016/j.ast.2021.107064 [4] 唐志共, 杨彦广, 刘君等. 横向喷流干扰/控制研究进展. 实验流体力学, 2010, 24(4): 1-6 (Tang Zhigong, Yang Yanguang, Liu Jun, et al. The investigation and expectation on lateral jet interference/control. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 1-6 (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.04.001 [5] 许晨豪, 蒋崇文, 高振勋等. 高超声速飞行器反作用控制系统喷流干扰综述. 力学与实践, 2014, 36(2): 147-155, 160 (Xu Chenhao, Jiang Chongwen, Gao Zhenxun et al. The jet interaction effects of reaction contaol systems in hypersonic vehicles. Mechanics in Engineering, 2014, 36(2): 147-155, 160 (in Chinese) [6] Gilman BG. Control jet interaction investigation. Journal of Spacecraft and Rockets, 1971, 8(4): 334-339 doi: 10.2514/3.30275 [7] Cubbison RW, Anderson BH, Ward JJ. Surface pressure distributions with a sonic jet normal to adjacent flat surfaces at Mach 2.92 to 6.4//National Aeronautics and Space Administration, 1961 [8] Spaid FW, Cassel LA. Aerodynamic interference induced by reaction controls. AGARD-AG-173, 1973 [9] Srivastava B. Computational analysis and validation for lateral jet-controlled missiles. Journal of Spacecraft and Rockets, 1997, 34(5): 584-592 doi: 10.2514/2.3272 [10] Haidinger F, Weiland C. Jet/airflow interaction study on a non-winged reentry vehicle at supersonic speed//35th Aerospace Sciences Meeting and Exhibit. 1997: 409 [11] Gilmore M, Warburton K. Axisymmetric hypersonic jet interaction. II-a combined experimental and computational study//33rd Aerospace Sciences Meeting and Exhibit. 1995: 414 [12] 李素循. 近空间飞行器的气动复合控制原理及研究进展. 力学进展, 2009, 39(6): 740-755 (Li Suxun. Progress in aerodynamics of combination control for vehicles at high speed. Advances in Mechanics, 2009, 39(6): 740-755 (in Chinese) [13] 梁杰, 阎超, 李志辉等. 稀薄过渡流区横向喷流干扰效应数值模拟研究. 空气动力学学报, 2013, 31(1): 29-35 (Liang Jie, Yan Chao, Li Zhihui, et al. Numerical simulation of transverse jet interference effects in the rarefied transition flow region. Acta Aerodynamica Sinica, 2013, 31(1): 29-35 (in Chinese) [14] 张智勇, 张艳. 稀薄气体环境对逆向喷流的减阻和防热效果的影响. 东南大学学报(自然科学版), 2022, 52(3): 594-601 (Zhang Zhiyong, Zhang Yan. Influence of rarefied gas environment on the drag and heat reduction effect of opposing jet. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 594-601 (in Chinese) [15] 陈雪冬, 王发民, 唐贵明. 高温燃气喷流/主流相互干扰实验研究. 力学学报, 2012, 44(2): 230-237 (Chen Xuedong, Wang Famin, Tang Guiming. The investigation of experimental technique for high temperature gas jet flow test in impulse wind tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237 (in Chinese) [16] 陈雪冬, 王发民, 唐贵明. 脉冲风洞热喷流实验方法初步研究. 实验流体力学, 2012, 26(3): 68-73 (Chen Xuedong, Wang Famin, Tang Guiming. Investgation of experimental technique for high-temperature jet flow test in impulse wind tunnel. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 68-73 (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.03.012 [17] 李洁, 石于中, 徐振富等. 高超声速稀薄流的气粒多相流动DSMC算法建模研究. 空气动力学学报, 2012, 30(1): 95-100 (Li Jie, Shi Yuzhong, Xu Zhenfu, et al. Study of DSMC algorithm and model for hypersonic multiphase rarefied flow. Acta Aerodynamica Sinica, 2012, 30(1): 95-100 (in Chinese) [18] 靳旭红, 黄飞, 程晓丽等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟. 航空动力学报, 2019, 34(1): 208-216 (Jin Xuhong, Huang Fei, Cheng Xiaoli, et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime. Journal of Aerospace Power, 2019, 34(1): 208-216 (in Chinese) [19] 李洁, 陈伟芳, 任兵. 二维过渡区喷流干扰流场的DSMC/EPS仿真. 推进技术, 2003, 24(6): 495-499 (Li Jie, Chen Weifang, Ren Bing. Numerical study on chemical reactive jet interaction flows in the two-dimensional transitional regime by DSMC/EPSM method. Journal of Propulsion Technology, 2003, 24(6): 495-499 (in Chinese) [20] 梁杰, 阎超, 杨彦广等. 过渡区侧向喷流干扰的并行DSMC数值模拟研究. 宇航学报, 2011, 32(5): 1012-1018 (Liang Jie, Yan Chao, Yang Yanguang, et al. Parallel DSMC simulation of lateral jet interaction in rarefied transitional region. Acta Astronautica, 2011, 32(5): 1012-1018 (in Chinese) [21] Zhuang H, Ding D, Chen H, et al. Effectiveness of reaction control system in hypersonic rarefied reactive flow. Journal of Spacecraft and Rockets, 2022, 59(3): 717-727 doi: 10.2514/1.A35187 [22] 靳旭红, 黄飞, 程晓丽等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟. 航空动力学报, 2019, 34(1): 201-209 (Jin Xuhong, Huang Fei, Cheng Xiaoli, et al. Monte Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime. Journal of Aerospace Power, 2019, 34(1): 201-209 (in Chinese) [23] 王树军, 胡俊, 吴甲生等. 旋转导弹横向喷流/外流干扰的数值模拟研究. 系统仿真学报, 2009, 21(11): 3472-3475, 3478 (Wang Shujun, Hu Jun, Wu Jiasheng, et al. Numerical simulation of interaction between lateral jet and external flow over spinning missile. Journal of System Simulation, 2009, 21(11): 3472-3475, 3478 (in Chinese) [24] 黄琳, 聂万胜, 陈伟芳. 姿控发动机高空羽流流场干扰效应的DSMC方法研究. 空气动力学学报, 2003, 21(1): 104-108 (Huang Lin, Nie Wansheng, Chen Weifang. Studying of multiplume interference effects for attitude control thruster with DSMC method. Acta Aerodynamica Sinica, 2003, 21(1): 104-108 (in Chinese) [25] Cecil E, McDaniel J. Planar velocity and temperature measurements in rarefied hypersonic flow using iodine LIF//38th AIAA Thermophysics Conference. Toronto, 2005: 4695 [26] Reed EM. Planar laser induced iodine fluorescence for the invesitgation of the aerodynamics of reaction control system jets on mars-entry aeroshells. [PhD Thesis]. Charlottesville: University of Virginia, 2013 [27] Reed E, Alkandry HI, Codoni J, et al. Investigation of the interactions of reaction control systems with mars science laboratory aeroshell //48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, 2010: 1558 [28] Liang J, Li Z, Li X, et al. DSMC numerical simulation of lateral jet interaction with rarefied atmosphere. American Institute of Physics, 2014, 1628(1): 589-595 [29] 李进平, 张仕忠, 于江鹏等. 以高温燃气为试验介质的爆轰波风洞. 气体物理, 2018, 3(6): 1-8 (Li Jinping, Zhang Shizhong, Yu Jiangpeng et al. A detonation tunnel with high temperature burnt gas test medium. Physics of Gases, 2018, 3(6): 1-8 (in Chinese) [30] 杨彦广, 刘君. 高超声速主流中横向喷流干扰非定常特性研究. 空气动力学学报, 2004, 22(3): 295-302 (Yang Yanguang, Liu jun. Unsteady characteristic research of lateral jet in hypersonic external flow. Acta Aerodynamica Sinica, 2004, 22(3): 295-302 (in Chinese) [31] Viti V, Neel R, Schetz JA. Detailed flow physics of the supersonic jet interaction flow field. Physics of Fluids, 2009, 21(4): 046101 doi: 10.1063/1.3112736 [32] 余生晨, 刘大有, 孙莉民. 一阶方向导数极值法—一种检测边缘的新方法. 计算机研究与发展, 2000, 37(2): 244-247 (Yu Shengchen, Liu Dayou, Sun Limin. Method using extremum of first directional derivative—a new method for edge detection. Journal of Computer Research and Development, 2000, 37(2): 244-247 (in Chinese) [33] 张杰, 高振勋, 李椿萱. 后拐板对高超声速层流来流/声速喷流干扰流动的影响//第十四届全国激波与激波管学术会议论文集(下册). 2010: 145-152Zhang Jie, Gao Zhenxun, Li Chunxuan Effects of back-ramp to the interaction flow of hypersonic laminar freee-stream and sonic jet//Proceedings of the 14th National Shock and Shock Tube Academic Conference (Volume II). 2010: 145-152 (in Chinese) [34] Gochberg LA. Electron beam fluorescence methods in hypersonic aerothermodynamics. Progress in Aerospace Sciences, 1997, 33(7-8): 431-480 doi: 10.1016/S0376-0421(97)00002-X -