EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光等离子体与正激波相互作用的PIV实验研究

王殿恺 石继林 黄龙呈 文明 张腾飞

王殿恺, 石继林, 黄龙呈, 文明, 张腾飞. 脉冲激光等离子体与正激波相互作用的PIV实验研究. 力学学报, 2023, 55(6): 1-12 doi: 10.6052/0459-1879-22-580
引用本文: 王殿恺, 石继林, 黄龙呈, 文明, 张腾飞. 脉冲激光等离子体与正激波相互作用的PIV实验研究. 力学学报, 2023, 55(6): 1-12 doi: 10.6052/0459-1879-22-580
Wang Diankai, Shi Jilin, Huang Longcheng, Wen Ming, Zhang Tengfei. PIV experiment study on interaction between pulsed laser plasma and normal shock. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1-12 doi: 10.6052/0459-1879-22-580
Citation: Wang Diankai, Shi Jilin, Huang Longcheng, Wen Ming, Zhang Tengfei. PIV experiment study on interaction between pulsed laser plasma and normal shock. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1-12 doi: 10.6052/0459-1879-22-580

脉冲激光等离子体与正激波相互作用的PIV实验研究

doi: 10.6052/0459-1879-22-580
基金项目: 国家自然科学基金项目(12272133)和激光推进及其应用国家重点实验室自主课题资助项目
详细信息
    通讯作者:

    王殿恺, 副研究员, 主要研究方向为等离子体流动控制和光学测量技术. E-mail: diankai@mail.ustc.edu.cn

  • 中图分类号: V211.1

PIV EXPERIMENT STUDY ON INTERACTION BETWEEN PULSED LASER PLASMA AND NORMAL SHOCK

  • 摘要: 脉冲激光等离子体与超声速流场相互作用在飞行器减阻隔热、点火助燃等方面具有重要的应用价值. 纹影实验方法只能定性或半定量地反映流动状态. 为定量研究速度分布和旋涡结构, 针对激光等离子体及其与正激波相互作用过程开展粒子图像测速PIV实验研究. 在激波管实验平台上建立了纳秒脉冲激光能量沉积系统和PIV测量系统, 通过定量测量, 探明了激光等离子体引致的激光空气泡以及热核的流动特性, 揭示了激光等离子体在正激波冲击下的流动特性与演化规律, 并给出了激光能量大小和位置对相互作用过程的影响. 结果表明: 激光空气泡内的速度分布在激光入射方向上并不关于击穿点对称, 而是在靠近激光入射方向一侧的流速略大于远离激光入射方向一侧; 斜压导致热核在演化初期产生涡环, 后期则由剪切主导; 正激波与激光空气泡界面、热核界面相互作用时, 产生斜压涡量, 当激光能量为87.8 mJ、正激波马赫数1.4时, 热核在正激波作用下产生的涡量比在静止空气中演化时大1个数量级; 激光与正激波相互作用的关键过程是热核在正激波冲击下演化成涡环, 在激波波前注入激光能量能够获得更加显著的涡环.

     

  • 图  1  激波管实验系统

    Figure  1.  Setup of shock tube experiment

    图  2  时序同步控制方案

    Figure  2.  Time series synchronization control scheme

    图  3  正激波前后速度场测量结果

    Figure  3.  Velocity field around the normal shock

    图  4  激光空气泡速度场

    Figure  4.  Velocity field of laser air bubble

    图  5  激光空气泡内最大速度随时间变化图

    Figure  5.  The variation of the maximum velocity in the laser air bubble with time

    图  6  激光空气泡内最大速度的位置随时间变化

    Figure  6.  The position of the maximum velocity in the laser air bubble changes with time

    图  7  热核涡量的演化过程

    Figure  7.  Evolution of vorticity in the hot core

    图  8  示踪粒子散射照片

    Figure  8.  Photographs of scattering of tracer particles

    图  9  正激波冲击下的速度场和涡量场

    Figure  9.  Velocity and vorticity field during the interaction of normal shock

    图  10  正激波冲击热核后的涡量场

    Figure  10.  Vorticity field after the interaction of normal shock

    图  11  (a) 静止大气和(b) 正激波波后的激光空气泡

    Figure  11.  Laser air bubbles (a) in atmosphere and (b) at the behind of normal shock waves

    图  12  不同激光能量大小对应的激光空气泡内最大速度随时间变化

    Figure  12.  Maximum velocity in laser air bubble varies with time corresponding to different laser energy

    图  13  不同激光能量注入位置下的速度分布 (t = 15 μs)

    Figure  13.  Velocity distributions at different laser energy deposition positions (t = 15 μs)

  • [1] Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50: 593-627 doi: 10.1146/annurev-fluid-122316-045217
    [2] 王殿恺. 激光控制高超声速波系结构新方法. 北京: 科学出版社, 2018

    Wang Diankai. New Method of Laser Control Hypersonic Wave Structure. Beijing: Science Press, 2018 (in Chinese)
    [3] Knight D. Survey of aerodynamic drag reduction at high speed by energy deposition. Journal of Propulsion and Power, 2008, 24(6): 1153-1167 doi: 10.2514/1.24595
    [4] Karimi MS, Oboodi MJ. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. Heat and Mass Transfer, 2019, 55(2): 547-569 doi: 10.1007/s00231-018-2416-1
    [5] Ahmed MY, Qin N. Forebody shock control devices for drag and aero-heating reduction: a comprehensive survey with a practical perspective. Progress in Aerospace Sciences, 2020, 112: 100585 doi: 10.1016/j.paerosci.2019.100585
    [6] 潘沙, 田正雨, 冯定华等. 超燃冲压发动机唇口气动热计算研究与分析. 航空动力学报, 2009, 24(9): 2096-2100 (Pan Sha, Tian Zhengyu, Feng Dinghua, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip. Journal of Aerospace Power, 2009, 24(9): 2096-2100 (in Chinese) doi: 10.13224/j.cnki.jasp.2009.09.030
    [7] Russell A, Myokan M, Bottini H, et al. Application of laser energy deposition to improve performance for high speed intakes. Propulsion and Power Research, 2020, 9(1): 15-25 doi: 10.1016/j.jppr.2019.11.002
    [8] Cai Z, Zhu X, Sun M, et al. Experiments on flame stabilization in a scramjet combustor with a rear-wall-expansion cavity. International Journal of Hydrogen Energy, 2017, 42(43): 26752-26761 doi: 10.1016/j.ijhydene.2017.09.059
    [9] Yang J, Kubota T, Zukoski EE. Application of shock-induced mixing to supersonic combustion. AIAA Journal, 1993, 31(5): 854-862 doi: 10.2514/3.11696
    [10] 汪洋, 董刚. RM不稳定过程中预混火焰界面演化及混合区增长预测. 力学学报, 2020, 52(6): 1655-1665 (Wang Yang, Dong Gang. Interface evolutions and growth predictions of mixing zone on premixed flame interface during RM instability. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1655-1665 (in Chinese) doi: 10.6052/0459-1879-20-278
    [11] Kim S, Lee HJ. Influence of laser energy deposition conditions on the drag of a sphere in supersonic flow. Energies, 2019, 12(20): 3914 doi: 10.3390/en12203914
    [12] Oliveira A, Minucci M, Toro P, et al. Drag reduction by laser‐plasma energy addition in hypersonic flow//AIP Conference Proceedings, 2008: 379-389
    [13] Riggins D, Taylor T, Barnett T. Drag reduction and heat transfer mitigation techniques for blunt bodies in hypersonic flight//12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003: 6968
    [14] Yan H, Adelgren R, Boguszko M, et al. Laser energy deposition in quiescent air. AIAA Journal, 2003, 41(10): 1988-1995 doi: 10.2514/2.1888
    [15] An B, Wang Z, Yang L, et al. Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air. Journal of Applied Physics, 2017, 122(19): 193301 doi: 10.1063/1.4990096
    [16] Zheltovodov A, Pimonov E. Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock. Technical Physics, 2013, 58(2): 170-184 doi: 10.1134/S1063784213020278
    [17] Schülein E, Zheltovodov AA, Pimonov EA, et al. Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles. International Journal of Aerospace Innovations, 2010, 2(3): 165-188
    [18] Joarder R, Padhi UP, Singh AP, et al. Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body. International Journal of Heat and Mass Transfer, 2017, 105: 723-740 doi: 10.1016/j.ijheatmasstransfer.2016.10.025
    [19] 王伟东. 激光等离子体热核在激波冲击下的流动特性研究. [硕士论文]. 北京: 航天工程大学, 2018

    Wang Weidong. Flow characteristics of laser plasma thermonuclear under shock wave impact. [Master Thesis]. Beijing: Space Engineeing University, 2018 (in Chinese)
    [20] 卿泽旭. 纳秒脉冲激光能量沉积减小波阻的机理研究. [硕士论文]. 北京: 装备学院, 2017

    Qing Zexu. Mechanism of reducing wave resistance by nanosecond pulsed laser energy deposition. [Master Thesis]. Beijing: Equipment Insitute, 2017 (in Chinese)
    [21] Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun. Pure. Appl. Math., 1960, 13(2): 297-319 doi: 10.1002/cpa.3160130207
    [22] Meshkov E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 1969, 4(5): 101-104
    [23] 崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究. 力学学报, 2021, 53(5): 1246-1256 (Cui Zhuxuan, Ding Juchun, Si Ting. Numerical study on the evolution of three-dimensional concave cylindrical interface accelerated by reflected shock. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1246-1256 (in Chinese) doi: 10.6052/0459-1879-21-042
    [24] 徐惊雷. PIV技术在超及高超声速流场测量中的研究进展. 力学进展, 2012, 42(1): 81-90 (Xu Jinglei. The development of the PIV experiment study of the super/hypersonic flowfield. Advances in Mechanics, 2012, 42(1): 81-90 (in Chinese) doi: 10.6052/1000-0992-2012-1-lxjzJ2010-126
    [25] 王彦植, 陈方, 刘洪等. 高速流动PIV示踪粒子跟随响应特性实验研究. 实验流体力学, 2018, 32(3): 94-99 (Wang Yanzhi, Chen Fang, Liu Hong, et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94-99 (in Chinese) doi: 10.11729/syltlx20170160
    [26] Schrijer F, Scarano F, Van OB. Application of PIV in a Mach 7 double-ramp flow. Experiments in Fluids, 2006, 41(2): 353-363 doi: 10.1007/s00348-006-0140-y
    [27] Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987, 181: 41-76 doi: 10.1017/S0022112087002003
    [28] Prestridge K, Vorobieff P, Rightley P, et al. Validation of an instability growth model using particle image velocimetry measurements. Physical Review Letters, 2000, 84(19): 4353 doi: 10.1103/PhysRevLett.84.4353
    [29] Ranjan D, Niederhaus J, Motl B, et al. Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Physical Review Letters, 2007, 98(2): 024502 doi: 10.1103/PhysRevLett.98.024502
    [30] 张赋, 翟志刚, 司廷等. 反射激波作用下重气柱界面演化的PIV研究. 实验流体力学, 2014, 5: 13-17 (Zhang Fu, Zhai Zhigang, Si Ting, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method. Journal of Experiments in Fluid Mechanics, 2014, 5: 13-17 (in Chinese) doi: 10.11729/syltlx20130074
    [31] Zou LY, Liao SF, Liu CL, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders. Physics of Fluids, 2016, 28(3): 036101 doi: 10.1063/1.4943127
  • 加载中
图(13)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 录用日期:  2023-02-20
  • 网络出版日期:  2023-02-21

目录

    /

    返回文章
    返回