[1] |
Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50: 593-627 doi: 10.1146/annurev-fluid-122316-045217
|
[2] |
王殿恺. 激光控制高超声速波系结构新方法. 北京: 科学出版社, 2018Wang Diankai. New Method of Laser Control Hypersonic Wave Structure. Beijing: Science Press, 2018 (in Chinese)
|
[3] |
Knight D. Survey of aerodynamic drag reduction at high speed by energy deposition. Journal of Propulsion and Power, 2008, 24(6): 1153-1167 doi: 10.2514/1.24595
|
[4] |
Karimi MS, Oboodi MJ. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. Heat and Mass Transfer, 2019, 55(2): 547-569 doi: 10.1007/s00231-018-2416-1
|
[5] |
Ahmed MY, Qin N. Forebody shock control devices for drag and aero-heating reduction: a comprehensive survey with a practical perspective. Progress in Aerospace Sciences, 2020, 112: 100585 doi: 10.1016/j.paerosci.2019.100585
|
[6] |
潘沙, 田正雨, 冯定华等. 超燃冲压发动机唇口气动热计算研究与分析. 航空动力学报, 2009, 24(9): 2096-2100 (Pan Sha, Tian Zhengyu, Feng Dinghua, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip. Journal of Aerospace Power, 2009, 24(9): 2096-2100 (in Chinese) doi: 10.13224/j.cnki.jasp.2009.09.030
|
[7] |
Russell A, Myokan M, Bottini H, et al. Application of laser energy deposition to improve performance for high speed intakes. Propulsion and Power Research, 2020, 9(1): 15-25 doi: 10.1016/j.jppr.2019.11.002
|
[8] |
Cai Z, Zhu X, Sun M, et al. Experiments on flame stabilization in a scramjet combustor with a rear-wall-expansion cavity. International Journal of Hydrogen Energy, 2017, 42(43): 26752-26761 doi: 10.1016/j.ijhydene.2017.09.059
|
[9] |
Yang J, Kubota T, Zukoski EE. Application of shock-induced mixing to supersonic combustion. AIAA Journal, 1993, 31(5): 854-862 doi: 10.2514/3.11696
|
[10] |
汪洋, 董刚. RM不稳定过程中预混火焰界面演化及混合区增长预测. 力学学报, 2020, 52(6): 1655-1665 (Wang Yang, Dong Gang. Interface evolutions and growth predictions of mixing zone on premixed flame interface during RM instability. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1655-1665 (in Chinese) doi: 10.6052/0459-1879-20-278
|
[11] |
Kim S, Lee HJ. Influence of laser energy deposition conditions on the drag of a sphere in supersonic flow. Energies, 2019, 12(20): 3914 doi: 10.3390/en12203914
|
[12] |
Oliveira A, Minucci M, Toro P, et al. Drag reduction by laser‐plasma energy addition in hypersonic flow//AIP Conference Proceedings, 2008: 379-389
|
[13] |
Riggins D, Taylor T, Barnett T. Drag reduction and heat transfer mitigation techniques for blunt bodies in hypersonic flight//12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003: 6968
|
[14] |
Yan H, Adelgren R, Boguszko M, et al. Laser energy deposition in quiescent air. AIAA Journal, 2003, 41(10): 1988-1995 doi: 10.2514/2.1888
|
[15] |
An B, Wang Z, Yang L, et al. Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air. Journal of Applied Physics, 2017, 122(19): 193301 doi: 10.1063/1.4990096
|
[16] |
Zheltovodov A, Pimonov E. Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock. Technical Physics, 2013, 58(2): 170-184 doi: 10.1134/S1063784213020278
|
[17] |
Schülein E, Zheltovodov AA, Pimonov EA, et al. Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles. International Journal of Aerospace Innovations, 2010, 2(3): 165-188
|
[18] |
Joarder R, Padhi UP, Singh AP, et al. Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body. International Journal of Heat and Mass Transfer, 2017, 105: 723-740 doi: 10.1016/j.ijheatmasstransfer.2016.10.025
|
[19] |
王伟东. 激光等离子体热核在激波冲击下的流动特性研究. [硕士论文]. 北京: 航天工程大学, 2018Wang Weidong. Flow characteristics of laser plasma thermonuclear under shock wave impact. [Master Thesis]. Beijing: Space Engineeing University, 2018 (in Chinese)
|
[20] |
卿泽旭. 纳秒脉冲激光能量沉积减小波阻的机理研究. [硕士论文]. 北京: 装备学院, 2017Qing Zexu. Mechanism of reducing wave resistance by nanosecond pulsed laser energy deposition. [Master Thesis]. Beijing: Equipment Insitute, 2017 (in Chinese)
|
[21] |
Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun. Pure. Appl. Math., 1960, 13(2): 297-319 doi: 10.1002/cpa.3160130207
|
[22] |
Meshkov E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 1969, 4(5): 101-104
|
[23] |
崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究. 力学学报, 2021, 53(5): 1246-1256 (Cui Zhuxuan, Ding Juchun, Si Ting. Numerical study on the evolution of three-dimensional concave cylindrical interface accelerated by reflected shock. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1246-1256 (in Chinese) doi: 10.6052/0459-1879-21-042
|
[24] |
徐惊雷. PIV技术在超及高超声速流场测量中的研究进展. 力学进展, 2012, 42(1): 81-90 (Xu Jinglei. The development of the PIV experiment study of the super/hypersonic flowfield. Advances in Mechanics, 2012, 42(1): 81-90 (in Chinese) doi: 10.6052/1000-0992-2012-1-lxjzJ2010-126
|
[25] |
王彦植, 陈方, 刘洪等. 高速流动PIV示踪粒子跟随响应特性实验研究. 实验流体力学, 2018, 32(3): 94-99 (Wang Yanzhi, Chen Fang, Liu Hong, et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94-99 (in Chinese) doi: 10.11729/syltlx20170160
|
[26] |
Schrijer F, Scarano F, Van OB. Application of PIV in a Mach 7 double-ramp flow. Experiments in Fluids, 2006, 41(2): 353-363 doi: 10.1007/s00348-006-0140-y
|
[27] |
Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987, 181: 41-76 doi: 10.1017/S0022112087002003
|
[28] |
Prestridge K, Vorobieff P, Rightley P, et al. Validation of an instability growth model using particle image velocimetry measurements. Physical Review Letters, 2000, 84(19): 4353 doi: 10.1103/PhysRevLett.84.4353
|
[29] |
Ranjan D, Niederhaus J, Motl B, et al. Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Physical Review Letters, 2007, 98(2): 024502 doi: 10.1103/PhysRevLett.98.024502
|
[30] |
张赋, 翟志刚, 司廷等. 反射激波作用下重气柱界面演化的PIV研究. 实验流体力学, 2014, 5: 13-17 (Zhang Fu, Zhai Zhigang, Si Ting, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method. Journal of Experiments in Fluid Mechanics, 2014, 5: 13-17 (in Chinese) doi: 10.11729/syltlx20130074
|
[31] |
Zou LY, Liao SF, Liu CL, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders. Physics of Fluids, 2016, 28(3): 036101 doi: 10.1063/1.4943127
|