STUDY ON CONNECTIVITY AND ENTROPY SCALE OF THREE-DIMENSIONAL FRACTURE NETWORK
-
摘要: 裂隙网络是岩体地下水的主要流动通道, 而工程岩体中裂隙网络错综复杂, 裂隙网络的几何特征和连通性对其渗透性有着重要影响. 为了综合量化裂隙迹长、间距、倾角、开度对裂隙网络连通性和渗透性的影响, 基于信息熵原理, 提出了三维裂隙网络地质熵理论和连通性指标−熵尺度, 对比熵尺度与其他传统三维裂隙网络连通性指标, 验证了熵尺度评价三维裂隙网络连通性和渗透性的合理性. 结合锦屏一级水电站左岸边坡裂隙统计分布, 建立三维裂隙网络渗流数值计算方法, 分析不同裂隙迹长、倾角、间距、开度条件下三维裂隙面密度、无量纲逾渗密度、熵尺度和渗透系数的变化关系. 结果表明: 当体积率一定, 考虑开度影响时, 三维裂隙面密度和无量纲逾渗密度无法定量表征迹长和间距对裂隙网络连通性的影响; 裂隙迹长与熵尺度和渗透系数呈负相关关系, 裂隙间距和开度与熵尺度和渗透系数呈正相关关系, 裂隙倾角变化对熵尺度和渗透系数影响较小; 熵尺度与渗透系数的非线性关系近似满足二次多项式.Abstract: The fracture network is complex in engineering rock mass, both the geometric characteristics and connectivity have an important influence on its permeability. In order to comprehensively quantify the influence of fracture trace length, dip angle, spacing and aperture on the connectivity and permeability of fracture network, basing on the principle of information entropy, the geological entropy theory and connectivity index entropy scale of three-dimensional fracture network is proposed. Compared the entropy scale with other traditional connectivity indexes, the rationality of entropy scale in evaluating the connectivity and permeability of three-dimensional fracture network is verified. The results show that the trace length of the fracture is negatively correlated with the entropy scale and the permeability coefficient. The fracture spacing and aperture are positively correlated with the entropy scale and the permeability coefficient. The dip angle of the fracture has little effect on the entropy scale and the permeability coefficient. The nonlinear relationship between entropy scale and permeability coefficient approximately satisfies quadratic polynomial. Basing on the statistical distribution of the fractures on the Left Bank Slope Jinping Hydropower Station, a numerical calculation method of three-dimensional fracture network seepage is established. By analyzing the relationship between the three-dimensional fracture network geometric characteristics and fracture areal intensity, dimensionless percolation density, entropy scale and permeability coefficient, The following conclusions are obtained: when the volume ratio is constant and the influence of aperture is considered, the fracture areal intensity and dimensionless percolation density cannot quantitatively characterize the influence of fracture network geometric characteristics. The length of fracture is negatively correlated with entropy scale and permeability coefficient. The fracture spacing and aperture are positively correlated with entropy scale and permeability coefficient. The dip angle of fracture have little influence on entropy scale and permeability coefficient. The nonlinear relationship between entropy scale and permeability coefficient approximately satisfies the quadratic polynomial.
-
Key words:
- fracture network /
- geometric features /
- connectivity /
- entropy scale
-
表 1 不同网格尺度下的熵尺度
Table 1. Entropy scale with different grid scales
Grid scale HR HS 10 1 5 5 0.992527 2.537365 3.333333 0.986026 1.726512 2.5 0.981387 1.323399 2 0.973093 1.08842 1.666667 0.968802 0.930529 1.428571 0.963176 0.819883 1.25 0.958964 0.736894 1.111111 0.95343 0.673758 1 0.949158 0.623163 0.909091 0.94488 0.582159 0.833333 0.940987 0.548137 0.769231 0.935639 0.520206 0.714286 0.932679 0.49564 0.666667 0.92932 0.474633 0.625 0.923088 0.457349 0.588235 0.920473 0.441198 0.555556 0.91755 0.427018 0.526316 0.914108 0.414559 0.5 0.910686 0.403432 表 2 传统三维连通性指标
Table 2. Traditional 3D connectivity index
Symbol Expression Reference Description $ {\rho _N} $ ${\rho _N} = \dfrac{ {\displaystyle\sum {\tau (i,j)} } }{V}$ Ref. [22] V is the volume of rockmass $ \overline L $ $\overline L = \dfrac{ {\displaystyle\sum\limits_{n = 1}^N { {l_i} } } }{V}$ Ref. [23] N is the number of fracture
intersecting lines,
li is the length of fracture intersection line$ {P_{32}} $ ${P_{32} } = \dfrac{ {\displaystyle\sum\nolimits_i^N S } }{V}$ Ref. [10] S is the area of the fracture surface,
N is the number of fracture surface${\rho '_{3 {\rm{D}}} }$ ${\rho '_{3 {\rm{D}}} } = {\rho _V}{V_{ex} }$ Ref. [15] $ {\rho _V} $is the fracture density,
$ {V_{ex}} $is the excluded volume表 3 裂隙模型几何参数
Table 3. Geometric parameters of fracture model
Group Fracture set Mean length/m Dip direction/(°) Dip angle/(°) Spacing/m Aperture/μm Mean e Standard deviation A 1 [2,3] 309 60 2 73.2 0 2 156 77 B 1 2.5 309 60 [1,3] 72.6 0 2 156 77 C 1 2.5 309 60 2 78.1 0 2 156 [60,80] D 1 2.5 309 60 2 [20,100] [0,10] 2 156 77 E 1 [2,3] 309 60 [1,3] [20,300] 0 2 156 [60,80] -
[1] 陈益峰, 周创兵, 李典庆等. 大型水电工程渗流分析的若干关键问题研究. 岩土工程学报, 2010, 32(9): 1448-1454 (Chen Yifeng, Zhou Chuangbing, Li Dianqing, et al. Some key problems in seepage analysis of large hydropower projects. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1448-1454 (in Chinese) [2] 张奇华, 邬爱清. 三维任意裂隙网络渗流模型及其解法. 岩石力学与工程学报, 2010, 29(4): 720-730 (Zhang Qihua, Wu Aiqing. Three-dimensional arbitrary fracture network seepage model and its solution. Journal of Rock Mechanics and Engineering, 2010, 29(4): 720-730 (in Chinese) [3] 金波, 胡明, 方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报, 2022, 54(5): 1322-1330 (Jin Bo, Hu Ming, Fang Qihong. Study on stress field of surrounding rock and lining structure of deep buried subsea tunnel considering seepage effect. Chinese Journal of Thevretical and Applied Mechartics, 2022, 54(5): 1322-1330 (in Chinese) doi: 10.6052/0459-1879-21-670 [4] 蔡建超, 刘曰武. 非常规油气资源渗流力学进展专题序. 力学学报, 2021, 53(8): 2 (Cai Jianchao, Liu Yuewu. Special preface to advances in percolation mechanics of unconventional oil and gas resources. Chinese Journal of Thevretical and Applied Mechartics, 2021, 53(8): 2 (in Chinese) doi: 10.6052/0459-1879-21-408 [5] Robinson P. Connectivity of fracture systems-a percolation theory approach. Journal of Physics A: Mathematical and General, 1982, 16(3): 605-622 [6] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986, 22(13): 1845-1856 doi: 10.1029/WR022i013p01845 [7] Jafari A, Babadagli T. Effective fracture network permeability of geothermal reservoirs. Geothermics, 2011, 40(1): 25-38 doi: 10.1016/j.geothermics.2010.10.003 [8] Allard D. On the Connectivity of Two Random Set Models: The Truncated Gaussian and the Boolean. Netherlands Springer, 1993 [9] Xu C, Dowd PA, Mardia KV, et al. A connectivity index for discrete fracture networks. Journal of the International Association for Mathematical Geology, 2006, 38(5): 611-634 [10] Outters N. A generic study of discrete fracture network transport properties using FracMan/Mafic. Swedish Nuclear Fuel and Waste Management Co., 2003 [11] Xiong F, Sun H, Zhang Q, et al. Preferential flow in three-dimensional stochastic fracture networks: The effect of topological structure. Engineering Geology, 2022, 309: 106856 doi: 10.1016/j.enggeo.2022.106856 [12] Huang F, Yao C, Zhang X, et al. Connectivity evaluation for three-dimensional fracture network in support-based model: A case study in the Ordos Basin, China. Energy Science & Engineering, 2020, 8(7): 2492-2510 [13] Li Y, Chen J, Shang Y. Connectivity of three-dimensional fracture networks: a case study from a dam site in southwest China. Rock Mechanics and Rock Engineering, 2017, 50(1): 241-249 doi: 10.1007/s00603-016-1062-5 [14] Dershowitz WS, Foxford T, Doe T. Research report on fracture data analysis technology//Golder Associates, Redmond, 1998 [15] Xiong F, Jiang Q, Xu C, et al. Influences of connectivity and conductivity on nonlinear flow behaviours through three-dimension discrete fracture networks. Computers and Geotechnics, 2019, 107: 128-141 [16] Ye Z, Fan X, Zhang J, et al. Evaluation of connectivity characteristics on the permeability of two-dimensional fracture networks using geological entropy. Water Resources Research, 2021, 57(10): e2020WR029289 [17] Shannon C. The mathematical theory of communication. Bell Labs Technical Journal, 1950, 3(9): 31-32 [18] Bianchi M, Pedretti D. Geological entropy and solute transport in heterogeneous porous media. Water Resources Research, 2017, 53(6): 4691-4708 doi: 10.1002/2016WR020195 [19] Bianchi M, Pedretti D. An entrogram-based approach to describe spatial heterogeneity with applications to solute transport in porous media. Water Resources Research, 2018, 54(7): 4432-4448 doi: 10.1029/2018WR022827 [20] 张俊. 岩体裂隙网络连通性与渗流分析研究. [硕士论文]. 武汉: 武汉科技大学, 2020Zhang Jun. Connectivity and seepage analysis of rock fracture network. [Master Thesis]. Wuhan: Wuhan University of Science and Technology, 2020 (in Chinese)) [21] 王国胤, 于洪, 杨大春. 基于条件信息熵的决策表约简. 计算机学报, 2002, 25(7): 8 (WangGuoyin, YuHong, YangDachun. Decision table reduction based on conditional information entropy. Computer Journal, 2002, 25(7): 8 (in Chinese) doi: 10.3321/j.issn:0254-4164.2002.07.013 [22] Ozkaya SI, Mattner J. Fracture connectivity from fracture intersections in borehole image logs. Computers & Geosciences, 2003, 29(2): 143-153 [23] Instein HH, Locsin JLZ. Modeling rock fracture intersections and application to the Boston area. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(11): 1415-1421 doi: 10.1061/(ASCE)GT.1943-5606.0000699 [24] 伍法权, 祁生文, 宋胜武等. 复杂岩质高陡边坡变形与稳定性研究: 以雅砻江锦屏一级水电站为例. 北京: 科学出版社, 2008Wu Faquan, Qi Shengwen, Song Shengwu, et al. Study on Deformation and Stability of High and Steep Slopes with Complex Rocks: Taking the Jinping I Hydropower Station on the Yalong River as an Example. Beijing: Science Press, 2008 (in Chinese)) [25] 张奇华, 邬爱清. 随机结构面切割下的全空间块体拓扑搜索一般方法. 岩石力学与工程学报, 2007, 10: 2043-2048 (Zhang Qihua, Wu Aiqing. A general method for topological search of whole space blocks under random structural plane cutting. Journal of Rock Mechanics and Engineering, 2007, 10: 2043-2048 (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.10.012 [26] 张奇华. 岩体块体理论的应用基础研究. 武汉: 湖北科学技术出版社, 2010Zhang Qihua. Applied Basic Research of Rock Mass Block Theory. Wuhan: Hubei Science and Technology Press, 2010 (in Chinese)) [27] Kulatilake PHSW, Chen J, Teng J, et al. Discontinuity geometry characterization in a tunnel close to the proposed permanent shiplock area of the Three Gorges Dam Site in China. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(3): 255-277 doi: 10.1016/0148-9062(95)00060-7 [28] Snow DT. A parallel plate model of fractured permeable media. [PhD Thesis]. Berkeley: University of California, 1965 [29] Priest SD, Hudson JA. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences, 1981, 18: 183-197 [30] Hudson JA, Priest SD. Discontinuous and rock mass geometry. International Journal of Rock Mechanics and Mining Sciences, 1979, 16: 339-362 [31] 叶祖洋, 姜清辉, 姚池等. 三维裂隙网络非稳定渗流分析的变分不等式方法. 力学学报, 2013, 45(6): 878-887 (Ye Zuyang, Jiang Qinghui, Yao Chi, et al. Variational inequality method for unsteady seepage analysis of three-dimensional fracture network. Chinese Journal of Thevretical and Applied Mechartics, 2013, 45(6): 878-887 (in Chinese) doi: 10.6052/0459-1879-13-055 -