EXPERIMENTAL STUDY ON INERT GAS MAGNETOHYDRODYNAMIC POWER GENERATION BY DETONATION-DRIVEN
-
摘要: 磁流体发电装置作为一种特殊的高功率脉冲电源, 具有效率高、容量大、启动快的优点, 制约其发展的关键在于如何获得高电导率的发电工质. 爆轰驱动具有远超常规方式的驱动能力, 在提供高温、高电导率气体方面独具优势. 将爆轰驱动激波管技术应用于磁流体发电, 有利于突破磁流体发电技术瓶颈, 故据此开展了基于爆轰驱动激波管技术的惰性气体磁流体发电试验研究. 爆轰驱动根据激波管点火位置不同分为反向和正向两种运行模式, 反向爆轰驱动可提供时间较长、状态稳定的试验气流, 而正向爆轰优势在于产生高焓试验气流. 试验系统由爆轰驱动激波管、拉瓦尔喷管、发电通道、电磁铁和真空罐等组成, 试验中分别以反向爆轰和正向爆轰驱动激波管产生发电工质, 利用激波将惰性气体压缩至高温从而发生电离, 形成的等离子体经喷管加速后, 最终在法拉第直线型发电机内切割磁感线输出电能. 磁场强度0.9 T的条件下, 反向爆轰在负载3.5 Ω时获得了较稳定的1.9 kW输出功率, 持续时间1.5 ms; 外接35 mΩ负载时, 正向爆轰在0.3 ms内短时输出功率高达212 kW, 功率密度为0.2 GW/m3. 试验成功验证了基于爆轰驱动激波管技术的惰性气体磁流体发电方案的可行性, 为高功率脉冲电源的应用与发展提供了新的方法.Abstract: As a special high-power pulse supply, magnetohydrodynamic (MHD) power generation device has many advantages, such as high efficiency, large capacity, and fast startup. The key to restrict the development of it is how to obtain the working gas with high conductivity. The driving capacity of detonation-driven is far beyond the conventional mode. It has unique advantages in providing high temperature and high conductivity gas. Applying the detonation-driven shock tube technology to MHD power generation is beneficial to breaking through the technical bottleneck, so an experimental study of inert gas MHD power generation based on detonation-driven shock tube was carried out. According to different ignition positions, detonation-driven shock tube can be divided into backward mode and forward mode. Backward detonation-driven mode can provide a long time and stable state of the gas, while forward detonation-driven mode has the advantage of producing high enthalpy gas. The test system is composed of detonation-driven shock tube, Laval nozzle, power channel, electromagnet, vacuum tank, load resistance and other measuring devices. In the test, plasma flow is generated by backward or forward detonation-driven shock tube. The inert gas is compressed to high temperature and high conductivity by shock wave, ionized into conductive plasma. The plasma accelerates to high speed inside the nozzle, then cut the magnetic induction line in linear shaped faraday-type generator to generate electricity. Under the condition of 0.9 T magnetic induction intensity, the stable output power at 3.5 Ω load reaches 1.9 kW by backward detonation-driven with a duration of 1.5 ms. With an external load of 35 mΩ, the generator can produce up to 212 kW for a short time within 0.3 ms by forward detonation-driven, and the power density is 0.2 GW/m3. The experiment successfully verified the feasibility of inert gas MHD power generation by detonation-driven shock tube. And it provides a new method for the application and development of high-power pulse supply.
-
Key words:
- gaseous detonation /
- MHD power generation /
- shock tube /
- plasma /
- Faraday-type generator
-
表 1 反向爆轰驱动激波管性能参数
Table 1. Performance parameters of backward detonation-driven shock tube
Type Parameter mole ratio of driver gas H2:O2 = 2.5:1 initial pressure of driver gas/MPa 0.4 driven gas Ar initial pressure of driven gas/Pa 2500 incident shock Mach number 9.8 T5/kK 13 P5/MPa 1.5 表 2 正向爆轰驱动激波管性能参数
Table 2. Performance parameters of forward detonation-driven shock tube
Type Parameter mole ratio of driver gas H2:O2 = 3.5:1 initial pressure of driver gas/MPa 0.4 driven gas Ar initial pressure of driven gas/Pa 1250 incident shock Mach number 14 T5/kK 16 P5/MPa 2.5 表 3 试验工况
Table 3. Working conditions
Type Parameter driven gas Ar T5(backward detonation-driven)/K 1.3 × 104 P5(backward detonation-driven)/MPa 1.5 T5(forward detonation-driven)/K 1.6 × 104 P5(forward detonation-driven)/MPa 2.5 area ratio (exit/throat) 2 load resistance/Ω 0.035 ~ 3.5 magnetic flux density/T 0.9 -
[1] 王莹. 高功率脉冲电源. 北京: 原子能出版社, 1991Wang Ying. High Power Pulse Supply. Beijing: Atomic Energy Publishing House, 1991 (in Chinese) [2] Akiyama H, Fudamoto T, Katsuki S, et al. Industrial applications of pulsed power. IEEJ Transactions on Fundamentals and Materials, 2005, 125(9): 717-722 doi: 10.1541/ieejfms.125.717 [3] 张哲, 张子尧, 钟岩等. 电磁发射用脉冲功率电源系统的参数分析. 电子技术与软件, 2022, 12: 139-143 (Zhang Zhe, Zhang Ziyao, Zhong Yan, et al. Parameter analysis of pulse power supply system for electromagnetic emission. Electronic Technology &Software Engineering, 2022, 12: 139-143 (in Chinese) [4] 陈帅, 马偃亳, 赵婉瑜等. 电磁轨道炮最新研究进展及应用展望. 科技创新与应用, 2022, 12(17): 11-14 (Chen Shuai, Ma Yanbo, Zhao Wanyu, et al. Latest research progress and application prospect of electromagnetic rail gun. Technology Innovation and Application, 2022, 12(17): 11-14 (in Chinese) doi: 10.19981/j.CN23-1581/G3.2022.17.003 [5] Tushar KB. A magnetohydrodynamic power generating system: a technical review//IOP Conf. Series: Materials Science and Engineering, 2020 [6] Rosa RJ. Physical principles of magnetohydrodynamic power generation. Physics of Fluids, 1961, 4(2): 182-194 doi: 10.1063/1.1724426 [7] 李益文, 李应红, 张百灵等. 超声速气流磁流体加速初步实验研究. 力学学报, 2012, 44(2): 238-244 (Li Yiwen, Li Yinghong, Zhang Bailing, et al. Preliminary experimental investigation on supersonic flow magnetohydrodynamic (MHD) acceleration. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 238-244 (in Chinese) doi: 10.6052/0459-1879-2012-2-20120206 [8] 李益文, 王宇天, 庞垒等. 进气道等离子体/磁流体流动控制研究进展. 力学学报, 2019, 51(2): 311-321 (Li Yiwen, Wang Yutian, Pang Lei, et al. Research progress of plasma/MHD flow control in inlet. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321 (in Chinese) doi: 10.6052/0459-1879-18-290 [9] 刘鉴民. 磁流体发电. 北京: 机械工业出版社, 1984Liu Jianmin. Magnetohydrodynamic Power Generation. Beijing: China Machine Press, 1984 (in Chinese) [10] 屈会力. 新型磁流体发电系统法拉第型电推进研究. [硕士论文]. 南京: 东南大学, 2016Qu Huili. The research of faraday electric propulsion in a novel magneto hydrodynamic generation system. [Master Thesis]. Nanjing: Southeast University, 2016 (in Chinese) [11] Iwata T, Tsukazawa S, Okuno Y. Plasma behavior and characteristics of a pulsed-laser-driven MHD electrical power generation. Transactions-Institute of Electrical Engineers of Japan, 2019, 208: 3-9 [12] 李益文, 张百灵, 高岭等. 磁流体发电高温燃气的产生与控制研究. 推进技术, 2017, 38(6): 8 (Li Yiwen, Zhang Bailing, Gao Ling, et al. Research on generation and control of high temperature gas in MHD power generation. Journal of Propulsion Technology, 2017, 38(6): 8 (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.06.027 [13] 欧东斌, 曾徽, 杨国铭等. 电弧加热高温磁流体发电地面试验研究. 实验流体力学, 2019, 33(5): 7 (Ou Dongbin, Zeng Hui, Yang Guomin, et al. Experimental study of magnetohydrodynamic power generation system in arc heater. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 7 (in Chinese) doi: 10.11729/syltlx20180189 [14] Okuno Y, Okamura T, Suekane T, et al. Magnetohydrodynamic power generation experiment with Fuji-1 blow-down facility. Propulsion Power, 2003, 19(5): 894-900 doi: 10.2514/2.6180 [15] Okuno Y, Watanabe K, Kawasaki A, et al. Experimental studies of seed-free pure-inert-gas working MHD power generation//42nd AIAA Plasmadynamics and Lasers Conference, 2011 [16] Murakami T, Okuno Y. High-density magnetohydrodynamic energy conversion in a high-temperature inert gas. Applied Physics Letters. 2008, 93: 041504 [17] Murakami T, Okuno Y. Simulation and demonstration of magnetohydrodynamic energy conversion in a high-temperature inert gas. Phys. Plasmas, 2009, 16(3): 033501 [18] Murakami T, Zhuang Y, Okuno Y. High-temperature inert gas plasma magnetohydrodynamic energy conversion by using linear-shaped Faraday-type channel. Journal of Applied Physics, 2013, 113(6): 063303 doi: 10.1063/1.4792056 [19] Tanaka M, Zhuang Y, Komatsu F, et al. Experiments of high temperature inert gas plasma MHD power generation with a Faraday type generator//44th AIAA Plasmadynamics and Lasers Conference, 2013 [20] Tanaka M, Murakami T, Okuno Y. Plasma characteristics and performance of magnetohydrodynamic generator with high-temperature inert gas plasma. IEEE Transactions on Plasma Science, 2014, 42(12): 4020-4025 doi: 10.1109/TPS.2014.2365591 [21] Tanaka M, Murakami T, Okuno Y. Power generation experiments with a high temperature inert gas plasma faraday type mhd generator. Electrical Engineering in Japan, 2015, 193(4): 58-65 doi: 10.1002/eej.22768 [22] Tanaka M, Aoki Y, Zhao L, et al. Experiments on high-temperature xenon plasma magnetohydrodynamic power generation. IEEE Transactions on Plasma Science, 2016, 44(7): 1241-1246 doi: 10.1109/TPS.2016.2565600 [23] Tanaka M, Hitotsubashi Y, Okuno Y. Fundamental studies of radio-frequency preionization for frozen inert gas plasma magnetohydrodynamic electrical power generation//14th International Energy Conversion Engineering Conference, 2016 [24] Yu, HR, Chen, H, Zhao, W. Advances in detonation driving techniques for a shock tube/tunnel. Shock Waves, 2006, 15: 399-405 [25] 俞鸿儒. 探索发展激波风洞爆轰驱动技术. 力学学报, 2011, 43(6): 978-983 (Yu Hongru. Development study of detonation driving techniques for a shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983 (in Chinese) doi: 10.6052/0459-1879-2011-6-lxxb2011-331 [26] 居滋象, 吕友昌, 荆伯弘. 开环磁流体发电. 北京: 北京工业大学出版社, 1998Ju Zixiang, Lü Youchang, Jin Bohong. Open Cycle MHD Power Generation. Beijing: Beijing Technical University Publishing House, 1998 (in Chinese) [27] 唐路, 夏琦, 刘保林等. 脉冲磁流体发电技术研究进展. 推进技术, 2022, 43(8): 26-44 (Tang Lu, Xia Qi, Liu Baolin, et al. Research progress of pulsed MHD power generation technology. Journal of Propulsion Technology, 2022, 43(8): 26-44 (in Chinese) doi: 10.13675/j.cnki.tjjs.210294 [28] 刘飞标, 王铸, 彭燕等. 法拉第型磁流体发电机试验和数值仿真. 航空学报, 2020, 41(11): 10 (Liu Feibiao, Wang Zhu, Peng Yan, et al. Faraday type MHD generator: Experiment and numerical simulation. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 10 (in Chinese) [29] 陈熙. 热等离子体传热与流动. 北京: 科学出版社, 2009Chen Xi. Heat Transfer and Flow of Hot Plasma. Beijing: Science Press, 2009 (in Chinese) [30] Zhao W, Jiang ZL, Saito T, et al. Performance of a detonation driven shock tunnel. Shock Waves, 2005, 14(1): 53-59 [31] 陈强. 激波管流动的理论和实验技术. 合肥: 中国科技大学, 1979Chen Qiang. Theoretical and Experimental Techniques for Shock Tube Flow. Hefei: University of Science and Technology of China, 1979 (in Chinese) [32] Jiang ZL, Zhao W, Wang C, et al. Forward-running detonation drivers for high-enthalpy shock tunnels. AIAA Journal, 2012, 40(10): 2009-2016 [33] 黄护林, 李林永, 李来等. 等离子体磁流体发电研究进展. 深空探测学报, 2018, 5(4): 331-346 (Huang Hulin, Li Linyong, Li Lai, et al. Research progress of plasma magnetic fluid power generation. Journal of Deep Space Exploration, 2018, 5(4): 331-346 (in Chinese) doi: 10.15982/j.issn.2095-7777.2018.04.003 -