A MAXIMUM ENTROPY APPROACH FOR UNCERTAINTY QUANTIFICATION OF INITIAL GEOMETRIC IMPERFECTIONS OF THIN-WALLED CYLINDRICAL SHELLS WITH LIMITED DATA
-
摘要: 具有不确定性特征的初始缺陷被认为是导致薄壳结构实际临界载荷值与理论解不相符并呈现分散特征的主要原因. 对实际薄壳结构初始缺陷的建模至少需要考虑两个方面的不确定性量化, 一是对缺陷分布形式和幅值等固有随机性的量化, 二是对小样本量和不准确测量所导致缺陷统计量的不确定性的量化. 本文在利用随机场的Karhunen-Loeve展开法对薄壳初始几何缺陷建模的基础上, 提出一种基于极大熵原理的缺陷建模方法. 首先, 采用极大熵分布来估计Karhunen-Loeve随机变量的概率密度函数, 以适应不能使用高斯随机场进行缺陷随机场建模的情况. 随后, 通过将经典的等式约束极大熵模型扩展为区间约束极大熵模型, 实现对实际工程中仅能获得少量薄壳结构几何缺陷样本数据所导致的认知不确定性的量化. 最后, 将所提方法用于对国际缺陷数据库的A-Shell进行缺陷建模和临界载荷预测. 研究表明, 所提基于区间约束极大熵原理的随机场建模方法在能够有效表征实测数据高阶矩信息的同时, 还具备量化小样本数据导致的认知不确定性的能力, 并且高斯随机场模型和基于等式约束极大熵原理的随机场模型是本文所提建模方法的两种特殊情况.Abstract: Initial imperfections with uncertainty characteristics are well-known recongnized as the main reason why the actual critical load values of thin-shell structures do not match the theoretical solutions and exhibit dispersion characteristics. In order to model the initial imperfections of actual thin-shell structures more appropriately, seveal sources of uncertainty quantification should be handled carefully, such as the quantification of the inherent randomness in the form and magnitude of the imperfection distribution, and the quantification of the uncertainty in the statistics due to small sample size and inaccurate measurements in practice. In this paper, a novel modeling approach for initial geometric imperfections of thin-walled shells is proposed based on the principle of maximum entropy and the Karhunen-Loeve expansion method of random fields. Firstly, the maximum entropy approach is used to estimate the probability density function of the Karhunen-Loeve random variables, which is aimed to model the gemometric imperfections as random fields without the assumpation of Gaussian and homogeneity. Secondly, the quantification of the epistemic uncertainty caused by the availability of only a small size of data on geometric imperfections of thin-walled shells is achieved by extending the classical equationally constrained maximum entropy model to an interval constrained maximum entropy model. Finally, the proposed method is used for imperfection modeling and critical load prediction for A-Shell of the international imperfection databank. It is shown that the proposed random field modeling approach based on the interval constrained maximum entropy principle not only has the ability to quantify the epistemic uncertainty due to small size of data, but also effectively characterizes the higher order moment information of the measured data, Furthermore, it is shown that the Gaussian random field model and the random field model based on the equation constrained maximum entropy principle are the two special cases of the proposed modeling approach in this paper.
-
表 1 模型参数
Table 1. Model parameters
Radius R/mm Height H/mm Thickness t/mm Young's modulus E/MPa Poisson's ratio ν Density ρ/(mg·mm−3) 101.60 202.29 0.1160 104410 0.3 2 表 2 含缺陷薄壁圆柱壳轴压极限载荷无量纲因子αc的统计均值和变异系数
Table 2. Mean and coefficient of variation of the cylindrical shell limit load
Random field model Number of samples Mean Coefficient of variation Gaussian random field 100 0.9041 0.0169 equation constrained maximum
entropy random field100 0.9017 0.0145 interval constrained maximum
entropy random field100 0.9017 0.0153 test sample 7 0.8973 0.0175 表 3 结构临界载荷KDF估计值
Table 3. KDF of the cylindrical shell limit load
Reliability 0.999 0.99 0.95 Gaussian random field 0.8569 0.8647 0.8803 interval constrained maximum
entropy random field0.8647 0.8698 0.8835 equation constrained maximum
entropy random field0.8707 0.8756 0.8872 -
[1] Wagner HNR, Hühne C, Elishakoff I. Probabilistic and deterministic lower-bound design benchmarks for cylindrical shells under axial compression. Thin-Walled Structures, 2020, 146: 179-200 [2] 王俊奎, 仝立勇. 关于圆筒壳稳定性中的初始缺陷. 力学进展, 1988, 18(2): 215-221 (Wang Junkui, Tong Liyong. On initial imperfections in stability of circular cylindrical shells. Advances in Mechanics, 1988, 18(2): 215-221 (in Chinese) [3] 陈志平, 焦鹏, 马赫等. 基于初始缺陷敏感性的轴压薄壁圆柱壳屈曲分析研究进展. 机械工程学报, 2021, 57(22): 114-129 (Chen Zhiping, Jiao Peng, Ma He, et al. Advances in buckling analysis of axial compression loaded thin-walled cylindrical shells based on Iinitial imperfection sensitivity. Journal of Mechanical Engineering, 2021, 57(22): 114-129 (in Chinese) doi: 10.3901/JME.2021.22.114 [4] 乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究进展. 力学季刊, 2018, 39(2): 223-236 (Qiao Pizhong, Wang Yanli, Lu Linjun. Advances in stability study of cylindrical shells. Chinese Quarterly of Mechanics, 2018, 39(2): 223-236 (in Chinese) doi: 10.15959/j.cnki.0254-0053.2018.02.001 [5] 王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展. 计算力学学报, 2019, 36(1): 1-12 (Wang Bo, Hao Peng, Tian Kuo. Recent advances in structural analysis and optimization of stiffened shells. Chinese Journal of Computational Mechanics, 2019, 36(1): 1-12 (in Chinese) doi: 10.7511/jslx20180615002 [6] Anonymous. Eurocode 3: Design of steel structures. European Committee for Standardisation, ENV, 1993-1-6 [7] Hühne C, Rolfe R, Breitbach E, et al. Robust design of composite cylindrical shells under axial compression-simulation and validation. Thin-Walled Structure, 2008, 46: 947-962 doi: 10.1016/j.tws.2008.01.043 [8] Wang B, Hao P, Li G, et al. Determination of realistic worst imperfection for cylindrical shells using surrogate model. Structural and Multidisciplinary Optimization, 2013, 48: 777-794 doi: 10.1007/s00158-013-0922-9 [9] Arbocz J, Starnes JrJ. Future directions and challenges in shell stability analysis. Thin-Walled Structure, 2002, 40: 729-754 doi: 10.1016/S0263-8231(02)00024-1 [10] Bolotin V, Akademii Nauk SSSR. Statistical methods in the non-linear theory of elastic shells. Otdelenie Tekhnicheskykh Nauk, 1958, 3: 33-41 (English Translation: NASA TTF-85 1962, 1-16 (in Russian)) [11] Budiansky B, Hutchinson JW. A survey of some buckling problems. AIAA Journal, 1966, 4(9): 1505-1510 doi: 10.2514/3.3727 [12] Zhang DL, Chen ZP, Li Y, et al. Lower-bound axial buckling load prediction for isotropic cylindrical shells using probabilistic random perturbation load approach. Thin-Walled Structures, 2020, 155: 106925.1-106925.17 [13] Elishakoff I. Resolution of the 20th Century Conundrum in Elastic Stability. World Scientific Publishing Co. Pte. Ltd. , 2014 [14] Arbocz J, Abramovich H. The initial imperfection databank at the Delft University of Technology, Part 1. Technical Report LR-290, Department of Aerospace Engineering, Delft University of Technology, 1979 [15] Benedikt K, Raimund R, Christian H, et al. Probabilistic design of axially compressed composite cylinders with geometric and loading imperfections. International Journal Of Structural Stability And Dynamics, 2010, 10: 623-644 doi: 10.1142/S0219455410003658 [16] Wang B, Du KF, Hao P, et al. Experimental validation of cylindrical shells under axial compression for improved knockdown factors. International Journal of Solids and Structures, 2019, 164: 37-51 doi: 10.1016/j.ijsolstr.2019.01.001 [17] Arbocz J, Hol JMAM. Collapse of axially compressed cylindrical shells with random imperfections. Thin-walled Structure, 1995, 23: 131-158 doi: 10.1016/0263-8231(95)00009-3 [18] Schenk CA, Schuëller GI. Buckling analysis of cylindrical shells with random geometrical imperfections. International Journal of Non-Linear Mechanics, 2003, 38: 1119-1132 doi: 10.1016/S0020-7462(02)00057-4 [19] Craig KJ, Roux WJ. On the investigation of shell buckling due to random geometrical imperfections implemented using Karhunen–Loève expansions. International Journal for Numerical Methods in Engineering, 2008, 73: 1715-1726 doi: 10.1002/nme.2141 [20] Benedikt K, Milena M, Raimund R. Sample size dependent probabilistic design of axially compressed cylindrical shells. Thin-Walled Structure, 2014, 74: 222-231 doi: 10.1016/j.tws.2013.10.003 [21] Yang H, Feng SJ, Hao P, et al. Uncertainty quantification for initial geometric imperfections of cylindrical shells: A novel bi-stage random field parameter estimation method. Aerospace Science and Technology, 2022, 124: 107554 doi: 10.1016/j.ast.2022.107554 [22] Gray A, Wimbush A, De Angelis M, et al. From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information. Mechanical Systems and Signal Processing, 2022, 165: 108210 doi: 10.1016/j.ymssp.2021.108210 [23] Fina M, Weber P, Wagner W. Polymorphic uncertainty modeling for the simulation of geometric imperfections in probabilistic design of cylindrical shells. Structural Safety, 2020, 82: 101894.1-101894.20 [24] Feng SJ, Duan YH, Yao CY, et al. A Gaussian process-driven worst realistic imperfection method for cylindrical shells by limited data. Thin-Walled Structure, 2022, 181: 110130 doi: 10.1016/j.tws.2022.110130 [25] 李建宇, 魏凯杰. 考虑周长约束的圆柱薄壳初始几何缺陷随机场建模方法. 计算力学学报, 2020, 37: 722-728 (Li Jianyu, Wei Kaijie. Modeling initial geometrical imperfections of thin cylindrical shells by random field with perimeter constraints. Chinese Journal of Computational Mechanics, 2020, 37: 722-728 (in Chinese) doi: 10.7511/jslx20200216001 [26] 李建宇, 佘昌忠, 张丽丽. 薄壁圆筒壳初始几何缺陷不确定性量化的极大熵方法. 计算力学学报, 2022, 39: 443-449 (Li Jianyu, She Changzhong, Zhang Lili. A maximum entropy approach for uncertainty quantification of initial geometric imperfections of thin-walled cylindrical shell. Chinese Journal of Computational Mechanics, 2022, 39: 443-449 (in Chinese) doi: 10.7511/jslx20210209001 [27] Ghanem RG, Doostan A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data. Journal of Computational Physics, 2006, 217(1): 63-81 doi: 10.1016/j.jcp.2006.01.037 [28] Zhang RJ, Dai HZh. Stochastic analysis of structures under limited observations using kernel density estimation and arbitrary polynomial chaos expansion. Computer Methods in Applied Mechanics and Engineering Part A, 2023, 403: 115689 doi: 10.1016/j.cma.2022.115689 [29] 李仲民. 基于不完整概率信息的随机场重构方法 [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2021Li Zhongmin. The recovery of random fields based on incomplete probabilistic information [Master Thesis]. Harbin: Harbin Institute of Technology, 2021 (in Chinese) [30] Soize C. Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering. Springer, 2017 [31] Murphy KP. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. [32] Mihara, Y, Kobayashi T, Fujii F, et al. Postbuckling analyses of elastic cylindrical shells under axial compression. Transactions of The Japan Society of Mechanical Engineers Series A, 2011, 77: 582-589 -