EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

顺桨风力机塔叶干涉翼型非稳气动力时频特性

唐新姿 何文双 郭颜威 彭锐涛

唐新姿, 何文双, 郭颜威, 彭锐涛. 顺桨风力机塔叶干涉翼型非稳气动力时频特性. 力学学报, 2023, 55(3): 588-598 doi: 10.6052/0459-1879-22-554
引用本文: 唐新姿, 何文双, 郭颜威, 彭锐涛. 顺桨风力机塔叶干涉翼型非稳气动力时频特性. 力学学报, 2023, 55(3): 588-598 doi: 10.6052/0459-1879-22-554
Tang Xinzi, He Wenshuang, Guo Yanwei, Peng Ruitao. Time-frequency characteristics of unsteady aerodynamic forces for feathered wind turbine airfoil under tower blade interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 588-598 doi: 10.6052/0459-1879-22-554
Citation: Tang Xinzi, He Wenshuang, Guo Yanwei, Peng Ruitao. Time-frequency characteristics of unsteady aerodynamic forces for feathered wind turbine airfoil under tower blade interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 588-598 doi: 10.6052/0459-1879-22-554

顺桨风力机塔叶干涉翼型非稳气动力时频特性

doi: 10.6052/0459-1879-22-554
基金项目: 湖南省自然科学基金(2021JJ30676)和国家自然科学基金(51975504)资助项目
详细信息
    通讯作者:

    唐新姿, 教授, 研究方向为风力发电技术. E-mail: xinzitang@163.com

  • 中图分类号: TK83

TIME-FREQUENCY CHARACTERISTICS OF UNSTEADY AERODYNAMIC FORCES FOR FEATHERED WIND TURBINE AIRFOIL UNDER TOWER BLADE INTERACTION

  • 摘要: 由于风力机叶片与塔筒流场相互干涉, 实际气动力与理想情况存在较大差异, 这种干涉作用造成的气动力差异给叶片与塔筒结构可靠性带来不可忽视的影响. 以翼型DU91-W2-250为研究对象, 采用瞬态数值分析与本征正交分解方法, 考虑叶片和塔筒流场相互干涉作用, 分析顺桨工况翼型非稳气动力时频特性及其影响规律, 量化不同雷诺数下塔叶相对位置及几何参数对气动力均值、波动幅度和频率的影响程度, 通过流场模态能量分布形态分析, 揭示流场干涉对气动力的影响机制. 结果表明, 翼型气动中心至塔筒几何中心的垂直距离、水平距离以及塔筒直径相对于翼型弦长的无量纲参数y*, x*和D*对气动力均有不同程度影响, 其中y*对升阻力系数均值影响最大, 对频率无明显影响, y*绝对值越大, Cl均值越接近单翼型Cl值, y*绝对值越小升阻力系数波动幅度越大, y*从−12增大到12, 升力系数均值最小值为−0.48, 最大值为1.16; x*减小和D*增大, 反向阻力均值增大, 波动幅度增大, 波动频率略有下降, 当x*小于临界值5时, 带塔翼型阻力均值反向; 在计算范围内, 带塔翼型升力系数均值相对于单翼型升力系数最大偏差为−221.94%, 其最大波动幅度相对单翼型升力系数为28.0%, 带塔翼型阻力系数均值最大偏差为−1189.3%, 其最大波动幅度为121.1%; 受塔筒前方高压区影响, 翼型流场存在明显对称脉动激励, 造成气动力偏离和波动.

     

  • 图  1  参数定义

    Figure  1.  Parameter definition

    图  2  计算域及网格划分示意图

    Figure  2.  Sketch of computational domain and mesh

    图  3  圆柱速度场POD模态

    Figure  3.  POD velocity contour modes for cylinder

    图  4  雷诺数为1 × 106时不同x*下升阻力系数的时程曲线和频谱

    Figure  4.  Time histories and frequency spectra of Cl and Cd under different x* at Re of 1 × 106

    图  5  不同x*下翼型升阻力均值和波动幅度曲线

    Figure  5.  Mean value and amplitude of Cl and Cd of airfoil under different x*

    图  6  不同x*下前4阶压力POD模态云图

    Figure  6.  The first 4 POD mode of pressure contour under different x*

    图  7  雷诺数为1 × 106时不同y*下升阻力系数的时程曲线和频谱

    Figure  7.  Time histories and frequency spectra of Cl and Cd under different y* at Re of 1 × 106

    图  8  不同y*下翼型升阻力均值和波动幅度曲线

    Figure  8.  Mean value and amplitude of Cl and Cd of airfoil under different y*

    图  9  不同y*下前4阶压力POD模态云图

    Figure  9.  The first 4 POD pressure contour under different y*

    图  10  雷诺数为1 × 106时不同D*下升阻力系数的时程曲线和频谱

    Figure  10.  Time histories and frequency spectra of Cl and Cd under different D* at Re of 1 × 106

    图  11  不同D*下翼型升阻力均值和波动幅度曲线

    Figure  11.  Mean value and amplitude of airfoil of Cl and Cd under different D*

    图  12  不同D*下前4阶压力POD模态云图

    Figure  12.  The first 4 POD mode of pressure contour under different D*

    表  1  网格无关性验证

    Table  1.   Mesh independence verification

    Total cellsCl
    mesh 14.92 × 1041.085
    mesh 27.12 × 1041.099
    mesh 39.71 × 1041.103
    mesh 41.26 × 1051.105
    mesh 51.61 × 1051.101
    下载: 导出CSV

    表  2  低攻角翼型升阻力系数

    Table  2.   Cl and Cd in small attack angle

    Attack angle/(°)This paperRef. [27]Relative error
    Cl
    0.140.3890.391−0.5%
    2.180.6060.612−0.9%
    4.210.8380.857−2.2%
    Cd
    0.148.90 × 10−39.00 × 10−3−1.3%
    2.189.90 × 10−31.03 × 10−2−3.5%
    4.211.15 × 10−21.10 × 10−24.0%
    下载: 导出CSV

    表  3  圆柱流场主要模态动能比

    Table  3.   Kinetic energy ratio of main POD modes

    KE of this paperKE of Ref. [30]Absolutely error
    mode 148.65%50.13%−1.48%
    mode 248.03%46.89%1.14%
    mode 31.11%1.41%−0.31%
    mode 41.11%1.40%−0.29%
    mode 50.49%0.78%−0.29%
    下载: 导出CSV

    表  4  翼型气动力波动主峰St

    Table  4.   Main St of force fluctuation for airfoil

    x*Re = 1.0 × 106Re = 2.0 × 106Re = 3.0 × 106
    2St = 0.15St = 0.14St = 0.12
    3St = 0.14St = 0.13St = 0.11
    4St = 0.13St = 0.13St = 0.11
    5St = 0.13St = 0.12St = 0.10
    $\infty$
    下载: 导出CSV

    表  5  不同D*Re下的翼型主峰St

    Table  5.   Airfoil main St under different D* and Re

    D*Re = 1 × 106Re = 2 × 106Re = 3 × 106
    1.50St = 0.19St = 0.17St = 0.14
    1.75St = 0.16St = 0.14St = 0.12
    2.00St = 0.14St = 0.13St = 0.11
    2.25St = 0.12St = 0.11St = 0.09
    2.50St = 0.12St = 0.10St = 0.08
    下载: 导出CSV
  • [1] 孙翀, 石磊, 沈昕等. 风力机翼型在失速工况下非定常流场的本征正交分解分析. 工程热物理学报, 2021, 42(4): 894-904 (Shun Zhong, Shi Lei, Shen Xing, et al. Analysis of POD for the flow field of the wind turbine airfoil at high angle of attack. Journal of Engineering Thermophysics, 2021, 42(4): 894-904 (in Chinese)
    [2] 孙朱俊, 许斌, 黄典贵. 前缘涡振圆柱对翼型气动性能的影响. 机械工程学报, 2022, 58(6): 242-252 (Shun Zhujun, Xu Bin, Huang Diangui. Effect of vortex induced vibrated cylinder on the aerodynamic performance of airfoil. Journal of Mechanical Engineering, 2022, 58(6): 242-252 (in Chinese)
    [3] Bhat SS, Govardhan RN. Stall flutter of NACA 0012 airfoil at low Reynolds numbers. Journal of Fluids and Structures, 2013, 41: 166-174 doi: 10.1016/j.jfluidstructs.2013.04.001
    [4] 李国俊, 白俊强, 唐长红等. 分离流动诱发的失速颤振和锁频现象研究. 振动与冲击, 2018, 37(19): 97-103, 111 (Li Guojun, Bai Junqiang, Tang Changhong, et al. Sep-aration flow induced stall flutter and frequency locking phenomena. Journal of Vibration and Shock, 2018, 37(19): 97-103, 111 (in Chinese)
    [5] Gao Q, Cai X, Meng R, et al. Anti-flutter optimization design of airfoil for wind turbine blade. Journal of Renewable and Sustainable Energy, 2018, 10(1): 013307 doi: 10.1063/1.5005562
    [6] 龙凯, 贾娇. 大型水平轴风力机塔筒涡激振动焊缝疲劳分析. 太阳能学报, 2015, 36(10): 2455-2459 (Long Kai, Jia Jiao. Analysis of fatigue damage of tower of large scale horizontalaxis wind turbine by wind-inducedtransverse vibration. Acta Energiae Solaris Sinica, 2015, 36(10): 2455-2459 (in Chinese)
    [7] Shakya P, Sunny MR, Maiti DK. A parametric study of flutterbehavior of a composite wind turbine blade with bend-twist coupling. Composite Structures, 2019, 207: 764-775 doi: 10.1016/j.compstruct.2018.09.064
    [8] 黄俊东, 夏鸿建, 李德源等. 风力机叶片后掠结构模态与颤振特性的影响分析. 太阳能学报, 2021, 42(11): 273-279 (Huang Jundong, Xia Hongjian, Li Deyuan, et al. Analysis of effects of modaland flutter characteristics of wind turbine blade. Acta Energiae Solaris Sinica, 2021, 42(11): 273-279 (in Chinese)
    [9] Horcas SG, Barlas T, Zahle F, et al. Vortex induced vibrations of wind turbine blades: Influence of the tip geometry. Physics of Fluids, 2020, 32(6): 065104 doi: 10.1063/5.0004005
    [10] Chen C, Zhou JW, Li FM, et al. Stall-induced vibrations analysis and mitigation of a wind turbine rotor at idling state: Theory and experiment. Renewable Energy, 2022, 187: 710-727 doi: 10.1016/j.renene.2022.01.078
    [11] 任年鑫, 徐世铮, 马哲等. 极端台风下停机姿态对海上风力机叶片气动载荷影响. 太阳能学报, 2020, 41(9): 287-292

    Ren Nianxing, Xu Shizheng, Ma Zhe, et al. Effect of parking attitude on aerodynamic loads of offshore wind turbine blades during extreme typhoon. Acta Energiae Solaris Sinica. 2020, 41(9): 287-292 (in Chinese))
    [12] Tang D, Xu M, Mao JF, et al. Unsteady performances of a parked large-scale wind turbine in the typhoon activity zones. Renewable Energy, 2020, 149: 617-630 doi: 10.1016/j.renene.2019.12.042
    [13] 余玮, 柯世堂, 王同光. 叶片停机位置对风力机塔筒绕流及尾流特性影响. 振动与冲击, 2017, 36(18): 207-213 (Yu Wei, Ke Shitang, Wang Tongguang. Impact of blade stopped positions on the flow around wind turbine tower and its wake performance. Journal of Vibration Engineering, 2017, 36(18): 207-213 (in Chinese)
    [14] 柯世堂, 王晓海. 考虑叶片偏航和干扰效应大型风力机体系风振响应与稳定性分析. 湖南大学学报(自然科学版), 2018, 45(7): 61-70 (Ke Shitang, Wang Xiaohai. Analysis on wind-induced response and stability of large analysis on wind-induced response and stability of large. Journal of Hunan University (Natural Sciences), 2018, 45(7): 61-70 (in Chinese)
    [15] Li K, Huang TZ, Li L. Non-intrusive reduced-order modeling of parameterized electromagnetic scattering problems using cubic spline interpolation. Journal of Scientific Computing, 2021, 87(2): 52
    [16] Zhang MH, Zheng ZQ. Relations of POD modes and Lyapunov exponents to the nonlinear dynamic states in flow over oscillating tandem cylinders. Physics of Fluids, 2018, 30(12): 123602 doi: 10.1063/1.5060419
    [17] 段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018, 50(2): 244-253 (Duan Songchang, Zhao Xizeng, Ye Zhouteng et al. Numerical study of staggered angle on the vortex-induced vibration of tow cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253 (in Chinese)
    [18] 叶坤, 武洁, 叶正寅等. 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析. 西北工业大学学报, 2017, 35(4): 599-607 (Ye Kun, Wu Jie, Ye Zhengying, et al. Anslysis circular cylinder flow using dynamic mode and proper orthogonal decomposition. Journal of Northwestern Polytechnical University, 2017, 35(4): 599-607 (in Chinese) doi: 10.3969/j.issn.1000-2758.2017.04.007
    [19] 谢海润, 吴亚东, 欧阳华等. 基于本征正交分解和动态模态分解的尾涡激振现象瞬态过程的模态分析. 上海交通大学学报, 2020, 54(2): 176-185 (Xie Hairun, Wu Yadong, Ou Yanghua, et al. Modal analysis of wake induced vibration transient process based on POD and DMD. Journal of Shanghai Jiao Tong University, 2020, 54(2): 176-185 (in Chinese)
    [20] 王燕, 程杰, 贾安等. 基于本征正交分解的水平轴风力机非定常尾迹特性分析. 农业工程学报, 2022, 38(7): 69-77 (Wang Yang, Cheng Jie, Jia An, et al. Unsteady wake analysis of horizontal wind turbine using proper orthogonal decomposition. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(7): 69-77 (in Chinese)
    [21] Marques RJH, Wolf WR. Identification of coherent structures in the flow past a NACA0012 airfoil via proper orthogonal decomposition. Physics of Fluids, 2017, 29(8): 085104 doi: 10.1063/1.4997202
    [22] Wu YH, Tang ZQ, Yang SQ et al. Proper-orthogonal-decomposition study of turbulent near wake of s805 airfoil in deep stall. AIAA Journal, 2017, 55(6): 1959-1969 doi: 10.2514/1.J055563
    [23] 范晨麟, 李孝伟. 基于本征正交分解方法的多段翼型流动分析. 上海大学学报(自然科学版), 2012, 18(1): 76-82 (Fan Chenling, Li Xiaowei. Proper orthogonal decomposition method for flow analysis of multi-element airfoil. Journal of Shanghai University (English Edition), 2012, 18(1): 76-82 (in Chinese)
    [24] 汪瑞欣, 赵振宙, 王同光等. 锯齿尾缘DU91-W2-250风力机翼型气动及噪声特性分析. 太阳能学报, 2020, 41(12): 221-228

    Wang Ruixin, Zhao Zhenzhou, Wang Tongguang, et al. Gresearch on aerodynamic and noise characteristics of du91-w2-250 airfoil of wind blade with serrated trailing edge. Acta Energiae Solaris Sinica, 2020, 41(12): 221-228 (in Chinese))
    [25] Robin L, Florian M. Transition modeling for general CFD. Applications in Aeronautics, 2012, 10.2514/6.2005-522.
    [26] 雷娟棉, 谭朝明. 基于Transition SST模型的高雷诺数圆柱绕流数值研究. 北京航空航天大学学报, 2017, 43(2): 207-217

    Lei Juanmian, Tan Zhaoming. Numerical simulation for flow around circular cylinder at high Reynolds number based on Transition SST model. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 207-217 (in Chinese))
    [27] Timmer WA, van Rpjom R. Summary of the delft university wind turbine dedicated airfoils. Journal of Solar Energy Engineering, 2003, 125(4): 488-496 doi: 10.1115/1.1626129
    [28] Dipankar A, Sengupta TK, Talla SB. Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 2007, 573: 171-190
    [29] Liu Q, Luo ZB, Deng X, et al. Numerical investigation on flow field characteristics of dual synthetic cold/hot jets using POD and DMD methods. Chinese Journal of Aeronautics, 2020, 33(1): 73-87 doi: 10.1016/j.cja.2019.07.004
    [30] Zwintzscher P, Gomez F, Blackburn HM. Data-driven control of the turbulent flow past a cylinder. Journal of Fluids and Structures, 2019, 89: 232-243 doi: 10.1016/j.jfluidstructs.2019.03.001
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  90
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 录用日期:  2023-03-19
  • 网络出版日期:  2023-03-20
  • 刊出日期:  2023-03-18

目录

    /

    返回文章
    返回