EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舵几何特征对桨−舵系统尾流场演化的影响

张维鹏 任建新 郭航 王子斌 胡健

张维鹏, 任建新, 郭航, 王子斌, 胡健. 舵几何特征对桨−舵系统尾流场演化的影响. 力学学报, 2023, 55(2): 318-329 doi: 10.6052/0459-1879-22-552
引用本文: 张维鹏, 任建新, 郭航, 王子斌, 胡健. 舵几何特征对桨−舵系统尾流场演化的影响. 力学学报, 2023, 55(2): 318-329 doi: 10.6052/0459-1879-22-552
Zhang Weipeng, Ren Jianxin, Guo Hang, Wang Zibin, Hu Jian. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329 doi: 10.6052/0459-1879-22-552
Citation: Zhang Weipeng, Ren Jianxin, Guo Hang, Wang Zibin, Hu Jian. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329 doi: 10.6052/0459-1879-22-552

舵几何特征对桨−舵系统尾流场演化的影响

doi: 10.6052/0459-1879-22-552
基金项目: 国家自然科学基金(52071105, 52271314)和黑龙江省自然科学基金(YQ2019E010)资助项目
详细信息
    通讯作者:

    胡健, 教授, 主要研究方向为船舶推进器减振降噪 . E-mail: hujian791018@163.com

  • 中图分类号: U661.1

IMPACT OF RUDDER GEOMETRY ON THE WAKE EVOLUTIONS OF PROPELLER-RUDDER INTERACTION

  • 摘要: 发生在桨和舵之间的干扰会影响螺旋桨尾流的演化, 导致尾流场中的湍流在下游增强, 恶化船舶的振动和噪声性能, 深入分析舵几何参数对桨−舵系统尾流场演化的影响能够为推进器尾流场的调节和减振降噪提供新思路. 因此, 从弦长、剖面和梯形舵入手分析不同的舵几何参数对螺旋桨尾流场演化特性的影响, 使用大漩涡模拟方法模拟流场中的湍流结构, 对不同舵弦长、剖面下的螺旋桨尾涡结构演化进行了分析, 在舵弦长、剖面影响螺旋桨尾流场演化的研究的基础上分析了梯形舵对螺旋桨尾涡结构的影响, 进一步分析了梯形舵影响下的螺旋桨尾流场中湍动能的分布. 结果表明舵的弦长和剖面均会影响螺旋桨尾流场的演化, 这种影响表现为更大的弦长和更厚的剖面会促进螺旋桨梢涡在舵压力面上的偏移, 更薄的舵剖面会带来更强烈的螺旋桨毂涡偏移; 涡管轮廓和舵表面脉动压力的对比均表明梯形舵会促进螺旋桨尾流场沿逆舵梯度方向偏移, 从而导致螺旋桨的尾涡结构在舵两侧及下游呈现不对称分布, 桨−舵系统下游的湍流结构与螺旋桨尾涡−舵碰撞过程、螺旋桨尾涡−舵随边涡干扰过程、螺旋桨梢涡−螺旋桨毂涡干扰有关, 偏移更大的螺旋桨尾涡结构会在尾流场中更早地引起湍动能增强.

     

  • 图  1  桨−舵系统

    Figure  1.  Layout of the propeller and rudder

    图  2  计算域设置(以4号舵为例)

    Figure  2.  Layout of computational domain (rudder 4 for example)

    图  3  网格分布(以1号舵为例)

    Figure  3.  Details of mesh (rudder 1 for example)

    图  4  数值模拟结果与试验结果的对比

    Figure  4.  Comparison between the numerical results and experimental results

    图  5  螺旋桨尾涡演化

    Figure  5.  Evolutions of propeller vortices

    图  6  压力分布

    Figure  6.  Distributions of pressure

    图  7  时均涡管轮廓的比较

    Figure  7.  Comparison of outlines of time-averaged vortex tubes

    图  8  时均涡管轮廓的比较

    Figure  8.  Comparison of outlines of time-averaged vortex tubes

    图  9  速度分布(Z = 0.425D)

    Figure  9.  Distributions of velocities (Z = 0.425D)

    图  10  水动力性能

    Figure  10.  Hydrodynamic performances

    图  11  螺旋桨尾涡演化

    Figure  11.  Evolutions of propeller vortices

    图  12  舵表面上的压力分布

    Figure  12.  Distributions of pressure on the rudder surface

    图  13  时均轴向涡量的分布

    Figure  13.  Distribution of time-averaged vorticity-x

    图  14  垂向速度分布

    Figure  14.  Distributions of vertical velocity

    图  15  压力监测点分布

    Figure  15.  Layouts of probes

    图  16  脉动压力的对比

    Figure  16.  Comparisons of pressure fluctuations

    16  脉动压力的对比 (续)

    16.  Comparisons of pressure fluctuations (continued)

    图  17  时间平均湍动能分布(2号舵)

    Figure  17.  Distributions of time-averaged TKE (rudder 2)

    图  18  时间平均湍动能分布(1号舵)

    Figure  18.  Distributions of time-averaged TKE (rudder 1)

    表  1  螺旋桨几何参数

    Table  1.   Geometric characteristics of propeller

    Diameter DNumber of blades N
    227 mm4
    下载: 导出CSV

    表  2  收敛性分析

    Table  2.   Grid uncertainty analysis

    Number of cellsKT10KQ100CR
    G13.747×1070.20640.36740.3066
    G21.507×1070.20830.36980.3163
    G36.280×1060.21070.37320.3536
    RG0.79170.70590.2601
    PG0.69431.03524.0029
    δ0.00720.00580.0034
    CG0.27410.43402.9639
    UG0.00720.00580.0168
    下载: 导出CSV

    表  3  数值模拟结果与其他研究人员数值模拟结果的对比(J = 0.83)

    Table  3.   Comparison between results obtained by present study and results obtained by other researchers (J = 0.83)

    KT10KQ
    results in present study0.19510.3491
    results of Ref. [24]0.19260.3566
    errors1.28%2.10%
    下载: 导出CSV
  • [1] Filippone A, Afgan I. Orthogonal blade-vortex interaction on a helicopter tail rotor. AIAA Journal, 2008, 46(6): 1476-1489 doi: 10.2514/1.32690
    [2] Shafii S, Obermaier H, Linn R, et al. Visualization and analysis of vortex-turbine interactions in wind farms. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(9): 1579-1591 doi: 10.1109/TVCG.2013.18
    [3] Roger M, Schram C, Moreau S. On the vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics. Journal of Sound and Vibration, 2014, 333: 283-306 doi: 10.1016/j.jsv.2013.09.012
    [4] Jiang Y, Mao ML, Deng XG, et al. Numerical investigation on body-wake flow interaction over rod-airfoil configuration. Journal of Fluid Mechanics, 2015, 779: 1-35 doi: 10.1017/jfm.2015.419
    [5] Kingan MJ, Parry AB. Time-domain analysis of contra-rotating propeller noise: wake interaction with a downstream propeller blade. Journal of Fluid Mechanics, 2020, 901: A21
    [6] Posa A, Broglia R, Balars E. The wake flow downstream of a propeller-rudder system. International Journal of Heat and Fluid Flow, 2021, 87: 108765 doi: 10.1016/j.ijheatfluidflow.2020.108765
    [7] Ghassemi H, Ghadimi P. Computational hydrodynamic analysis of the propeller-rudder and the AZIPOD systems. Ocean Engineering, 2009, 35: 117-130
    [8] Hu J, Zhang WP, Guo H, et al. Numerical simulation of propeller wake vortex–rudder interaction in oblique flows. Ships and Offshore Structures, 2021, 16(2): 144-155 doi: 10.1080/17445302.2020.1711630
    [9] Zhang XT, Hong Y, Yang F, et al. Effect of rudder on propulsion performance and structural deformation of composite propellers. Ocean Engineering, 2019, 182: 318-328 doi: 10.1016/j.oceaneng.2019.04.075
    [10] Hou LX, Wang C, Chang X, et al. Hydrodynamic performance analysis of propeller-rudder system with the rudder parameters changing. Journal of Marine Science and Application, 2013, 12: 406-412
    [11] Guo H, Zou ZJ. A RANS-based study of the impact of rudder on the propeller characteristics for a twin-screw ship during maneuvers. Ocean Engineering, 2021, 239: 109848 doi: 10.1016/j.oceaneng.2021.109848
    [12] Molland AF, Turnock SR. Wind tunnel investigation of the influence of propeller loading on ship rudder performance. No. 46 Ship Research Report of University of Southampton, 1991
    [13] Molland AF, Turnock SR. Marine Rudders and Control Surfaces: Principles, Data, Design and Application. Oxford: Butterworth-Heinemann, 2007
    [14] Baode CE, Phillips AB, Turnock ST. Influence of drift angle on the computation of hull-propeller-rudder interaction. Ocean Engineering, 2015, 103: 64-77 doi: 10.1016/j.oceaneng.2015.04.059
    [15] Felli M, Camussi R, Di Felice F. Mechanisms of evolution of the propeller wake in the transition and far fields. Journal of Fluid Mechanics, 2011, 682: 5-53 doi: 10.1017/jfm.2011.150
    [16] Di Mascio, A, Muscari, R, Dubbioso, G. On the wake dynamics of a propeller operating in drift. Journal of Fluid Mechanics, 2014, 754: 263-307
    [17] Wang LZ, Guo CY, Su YM, et al. Numerical analysis of a propeller during heave motion in cavitating flow. Applied Ocean Research, 2017, 66: 131-145 doi: 10.1016/j.apor.2017.05.001
    [18] Wang LZ, Guo CY, Xu P, et al. Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Engineering, 2018, 164: 23-39 doi: 10.1016/j.oceaneng.2018.06.036
    [19] Hu J, Wang YZ, Zhang WP, et al. Tip vortex prediction for contra-rotating propeller using large eddy simulation. Ocean Engineering, 2019, 194: 106410 doi: 10.1016/j.oceaneng.2019.106410
    [20] Wang LZ, Wu TC, Gong J, et al. Numerical simulation of the wake instabilities of a propeller. Physics of Fluids, 2021, 33(12): 125125 doi: 10.1063/5.0070596
    [21] 王恋舟, 吴铁成, 郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报, 2021, 53(8): 2267-2278 (Wang Lianzhou, Wu Tiecheng, Guo Chunyu. Study on instability mechanism and evolution model of propeller tip vortices. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2267-2278 (in Chinese) doi: 10.6052/0459-1879-21-151
    [22] Gong J, Ding JM, Wang LZ. Propeller-duct interaction on the wake dynamics of a ducted propeller. Physics of Fluids, 2021, 33(7): 074102 doi: 10.1063/5.0056383
    [23] Muscari R, Dubbioso G, Di Mascio A. Analysis of the flow field around a rudder in the wake of a simplified marine propeller. Journal of Fluid Mechanics, 2017, 814: 547-569 doi: 10.1017/jfm.2017.43
    [24] Wang LZ, Guo CY, Xu P. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engineering, 2019, 188: 106250 doi: 10.1016/j.oceaneng.2019.106250
    [25] Hu J, Zhang WP, Sun SL, et al. Numerical simulation of vortex–rudder interactions behind the propeller. Ocean Engineering, 2019, 190: 106446 doi: 10.1016/j.oceaneng.2019.106446
    [26] Zhang WP, Chen CG, Wang ZB, et al. Numerical simulation of structural response during propeller-rudder interaction. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 584-612 doi: 10.1080/19942060.2021.1899989
    [27] Zhang WP, Ning XS, Li FG, et al. Vibrations of simplified rudder induced by propeller wake. Physics of Fluids, 2021, 33(8): 083618 doi: 10.1063/5.0058968
    [28] Li DQ. A non-linear method for the propeller-rudder interaction with the slipstream deformation taken into account. Computer Methods in Applied Mechanics and Engineering, 1996, 130: 115-132 doi: 10.1016/0045-7825(96)80458-0
    [29] Felli M, Camussi R, Giulio G. Experimental analysis of the flow field around a propeller-rudder configuration. Experiments in Fluids, 2009, 46: 147-164 doi: 10.1007/s00348-008-0550-0
    [30] Felli M, Felchi M. Propeller tip and hub vortex dynamics in the interaction with a rudder. Experiments in Fluids, 2011, 51: 1385-1402 doi: 10.1007/s00348-011-1162-7
    [31] Felli M, Grizzi S, Falchi M. Hydrodynamic and hydroacoustic phenomena in the propeller wake-rudder interaction//Proceedings 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, 2014
    [32] Felli M. Underlying mechanisms of propeller wake interaction with a wing. Journal of Fluid Mechanics, 2021, 908: A10 doi: 10.1017/jfm.2020.792
    [33] Posa A, Broglia R, Balars E. Flow over a hydrofoil in the wake of a propeller. Computers & Fluids, 2020, 213: 1-16
    [34] Posa A, Broglia R, Balaras E. The wake structure of a propeller operating upstream of a hydrofoil. Journal of Fluid Mechanics, 2020, 904: A12 doi: 10.1017/jfm.2020.680
    [35] Posa A, Broglia R. Flow over a hydrofoil at incidence immersed within the wake of a propeller. Physics of Fluids, 2021, 33(12): 125108 doi: 10.1063/5.0075231
    [36] Durbin PA. Pettersson-Reif BA. Statistical Theory and Modeling for Turbulent Flow-Second Edition. Chichester: Wiley, 2011
    [37] Rodriguez S. Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Cham: Springer Nature Switzerland AG, 2019
    [38] Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29: 123-160 doi: 10.1146/annurev.fluid.29.1.123
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  66
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-01-15
  • 刊出日期:  2023-02-18

目录

    /

    返回文章
    返回