NATURAL VIBRATION ANALYSIS OF TWO-DIMENSIONAL FLEXIBLE WING BASED ON NON-UNIFORM BEAM MODEL
-
摘要: 变体飞行器通过光滑连续的结构变形改变气动特性, 从而提高飞行器的飞行性能, 具有很大的应用前景. 由于这类新概念飞行器主要通过改变自身结构形状以获得最佳工作性能的需求, 因此具有变形大、质量轻等特点, 较容易发生结构振动响应. 本文研究了一种以柔性变后缘作为变体形式的二维柔性机翼等效建模方法, 基于非均匀梁模型假设, 建立了该柔性翼的动力学模型. 通过利用Frobenius方法得到解析解及固有频率, 并用有限元方法进行对比验证, 发现前4阶固有频率的误差均在1%以内, 每阶固有频率对应的振型一致. 通过3D打印工程塑料ABS和硅胶蒙皮材料制备了柔性机翼结构件, 并通过动态测量法和拉伸试验分别测定了打印材料和硅胶蒙皮材料的杨氏模量, 搭建振动响应实验平台对制备的柔性机翼试验件进行振动试验. 对比发现模型振动试验获得的基频与理论模型结果一致, 并与有限元方法误差在3%以内. 本文通过理论分析和实验验证, 建立了二维柔性机翼等效建模方法, 研究结果将为柔性变后缘结构动力学特性分析及其控制应用方面提供理论支持.Abstract: In order to improve the flight performance of the aircraft, morphing technologies are used to change aerodynamic characteristics through smooth and continuous structural deformation. Since this new concept requires changing the structural shape to obtain the best performance, its inherent dynamic characteristics will be affected and even change its aeroelastic performance. In this paper, an equivalent modelling method of the two-dimensional flexible wing with camber morphing is developed. The dynamic model of the flexible wing is established based on the hypothesis of a non-uniform beam model. The analytical solution and natural frequencies are obtained by the method of Frobenius and verified by comparison with the finite element method solution. The errors of the first four natural frequencies are within 1% and the corresponding modes are consistent. The flexible wing is prepared by 3D printing engineering plastic (ABS) and silicone rubber skin. The Young's modulus of the 3D printing material and silicone rubber are respectively measured by dynamic measurement method and tensile test. The vibration response test platform is built to carry out vibration test of the flexible wing. It is found that the fundamental frequency obtained by vibration test is consistent with the theoretical model results, and the error is less than 3% compared with the finite element method. The equivalent modelling method of a two-dimensional flexible wing is established through theoretical analysis and experimental verification. The research results will provide theoretical support for applying the flexible trailing edge structures.
-
Key words:
- FishBAC /
- camber variation /
- nonuniform beam /
- natural vibration /
- power series solution
-
表 1 鱼骨柔性翼段模型参数
Table 1. Model parameters of the FishBAC morphing concept
Parameters Value baseline airfoil NACA0012 chord c/mm 305 span b/mm 150 start of morph xS/mm 107 end of morph xE/mm 260 number of stringer pairs n 14 stringer thickness tst/mm 0.8 skin thickness tsk/mm 1.5 spine thickness tbs/mm 2 stringer modulus Est/GPa 2.14 spine modulus Ebs/GPa 2.14 spine Poisson's ratio νbs 0.4 spine density ρbs/(kg·m−3) 1010 skin modulus Esk/MPa 4.56 skin Poisson's ratio νsk 0.4 skin density ρsk/(kg·m−3) 1010 表 2 验证算例参数
Table 2. Parameters of verification example
Parameters Value length l/mm 152.5 density ρ/(kg·m−3) 2700 width b/mm 1 thickness t/mm 2 Poisson's ratio ν 0.4 modulus of elasticity E/GPa 2.14 表 3 等截面悬臂梁的频率(Hz)
Table 3. Frequency of cantilever beam with equal section (Hz)
Methods Vibration order 1 2 3 4 Euler beam solution 12.3679 77.5085 217.025 425.283 Euler exact solution 12.3678 77.3732 217.022 425.280 shear beam series solution 12.3656 77.4313 216.513 423.434 FEM (NASTRAN) 12.3665 77.4470 216.619 423.817 表 4 FishBAC柔性段的频率(Hz)
Table 4. Frequency of the FishBAC (Hz)
Methods Vibration order 1 2 3 4 FEM (shell) 22.7621 118.163 292.228 — FEM (beam) 24.4647 136.962 368.522 709.733 Euler beam series solution 24.5482 138.507 373.935 725.166 shear beam series solution 24.5339 138.151 371.708 717.439 表 5 材料特性实验结果
Table 5. Experimental results of material properties
Parameters Value modulus of elasticity (ABS plastics) E1/GPa 1.823 modulus of elasticity (silicone rubber) E2/MPa 2.919 表 6 FishBAC柔性段的固有频率(Hz)
Table 6. The natural frequency of FishBAC (Hz)
Methods Frequency dynamic measurement test 19.4521 FEM (shell element) 18.5898 Euler beam series solution 19.9821 shear beam series solution 19.9654 -
[1] Barbarino S, Bilgen O, Ajaj RM, et al. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877 [2] Cistone J. Next century aerospace traffic management: the sky is no longer the limit. Journal of Aircraft, 2004, 41(1): 36-42 doi: 10.2514/1.1847 [3] Ajaj RM, Parancheerivilakkathil MS, Amoozgar M, et al. Recent developments in the aeroelasticity of morphing aircraft. Progress in Aerospace Sciences, 2020, 120: 100682 [4] 孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述. 无人系统技术, 2021, 4(3): 65-77 (Sun Yang, Chang Min, Bai Junqiang. Review of morphing wing aircraft. Unmanned Systems Technology, 2021, 4(3): 65-77 (in Chinese) doi: 10.19942/j.issn.2096-5915.2021.3.029 [5] 聂瑞. 变体机翼结构关键技术研究. [博士论文]. 江苏: 南京航空航天大学, 2018Nie Rui. Research on key technologies of morphing wing structures. [PhD Thesis]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese) [6] Wang C. Design and optimisation of morphing aircraft. [PhD Thesis]. Swansea: Swansea University, 2018 [7] 王彬文, 杨宇, 钱战森等. 机翼变弯度技术研究进展. 航空学报, 2022, 43(1): 144-163 (Wang Binwen, Yang Yu, Qian Zhanshen, etal. Technical development of variable camber wing: review. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 144-163 (in Chinese) [8] Woods BKS, Bilgen O, Friswell MI. Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures, 2014, 25(7): 772-785 [9] Rivero AE, Fournier S, Manolesos M, et al. Experimental aerodynamic comparison of active camber morphing and trailing edge flaps. AIAA Journal, 2021, 59(7): 2627-2640 doi: 10.2514/1.J059606 [10] Wang C, Khodaparast HH, Friswell MI. Conceptual study of a morphing winglet based on unsymmetrical stiffness. Aerospace Science and Technology, 2016, 58: 546-558 [11] Zhang J, Wang C, Shaw AD, et al. Passive energy balancing design for a linear actuated morphing wingtip structure. Aerospace Science and Technology, 2020, 107: 106279 doi: 10.1016/j.ast.2020.106279 [12] 王晨, 杨洋, 沈星等. 用于变体飞行器的波纹板等效强度模型及其优化设计. 航空学报, 2022, 43(6): 526146 (Wang Chen, Shen Yang, Shen Xing, et al. An equivalent strength model of courrgated panel and optimization design for morphing aircraft. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526146 (in Chinese) [13] 张盛, 杨宇, 王志刚等. 变弯度机翼后缘偏心梁设计与验证. 航空学报, 2022, 43(6): 525892 (Zhang Sheng, Yang Yu, Wang Zhigang, et al. Design and validation of eccentric beam for variable camber trailing edge. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525892 (in Chinese) [14] Woods BKS, Friswell MI. Preliminary investigation of a fishbone active camber concept//The ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2012 [15] Rivero AE, Fournier S, Heeb RM, et al. Design, manufacture and wind tunnel test of a modular FishBAC wing with novel 3D printed skins. Applied Sciences, 2022, 12(2): 652 [16] 杨翰雯, 胡德英, 何景武. 大展弦比机翼振动特性的工程算法平台研究. 飞机设计, 2020, 4(3): 65-77 (Yang Hanwen, Hu Deying, He Jingwu. Research on engineering algorithm platform for vibration characteristic of wing with high aspect ratio. Aircraft Design, 2020, 4(3): 65-77 (in Chinese) doi: 10.19555/j.cnki.1673-4599.2020.06.002 [17] 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础. 北京: 北京航空航天大学出版社, 2004Chen Guibin, Zou Congqing, Yang Chao. Fundamentals of Aeroelastic Design. Beijing: Beihang University Press, 2004 (in Chinese) [18] 陈洋, 王正杰, 郭士钧. 柔性翼飞行器刚柔耦合动态特性研究刚柔耦合动态特性研究. 北京理工大学学报, 2017, 37(10): 1061-1066 (Chen Yang, Wang Zhengjie, Guo Shijun. Analysis of rigid-flexible coupling dynamic characteristics of flexible wing aircraft. Transactions of Beijing Institute of Technology, 2017, 37(10): 1061-1066 (in Chinese) [19] 张亚滨, 高恒烜, 李书. 复合材料机翼结构动力学分析. 飞机设计, 2015, 35(3): 11-15 (Zhang Yabin, Gao Hengxuan, Li Shu. Dynamic analysis of composite materials wing structure. Aircraft Design, 2015, 35(3): 11-15 (in Chinese) doi: 10.19555/j.cnki.1673-4599.2015.03.003 [20] 王松松, 郭翔鹰, 王帅博. 变截面Z型折叠机翼振动特性的有限元与实验分析. 动力学与控制学报, 2020, 18(6): 84-89 (Wang Songsong, Guo Xiangying, Wang Shuaibo. Finite element analysis and experiment on vibration of Z-shaped morphing wing with variable section. Journal of Dynamics and Control, 2020, 18(6): 84-89 (in Chinese) [21] 田坤黉, 谷良贤, 王洪伟. 基于Hamilton原理的大展弦比直机翼固有特性分析. 机械强度, 2010, 32(5): 854-858 (Tian Kunhong, Gu Liangxian, Wang Hongwei. Inherence characteristic analysis of high apect ration wing based on Hamilton’s principle. Journal of Mechanical Strength, 2010, 32(5): 854-858 (in Chinese) doi: 10.16579/j.issn.1001.9669.2010.05.025 [22] Woods BKS, Friswell MI. Structual analysis of the fish bone active camber concept//Proceedings of the AIDAA XXII Conference, 2013 [23] Woods BKS, Friswell MI. Structural characterization of the fish bone active camber morphing airfoil//22nd AIAA/ASME/AHS Adaptive Structures Conference, 2014 [24] Woods BKS, Dayyani I, Friswell MI. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept. Journal of Aircraft, 2015, 52(1): 307-319 doi: 10.2514/1.C032725 [25] Zhang J, Shaw AD, Wang C, et al. Aeroelastic model and analysis of an active camber morphing wing. Aerospace Science and Technology, 2021, 111: 106534 doi: 10.1016/j.ast.2021.106534 [26] Hildebrand FB, Advanced calculus for applications. 2nd Edition. Englewood Cliffs: Prentice Hall, 1976 [27] 徐芝纶. 弹性力学 (上册), 第5版. 北京: 高等教育出版社, 2006Xu Zhilun. Elasticity Mechanics (Volume 1), 5th edn. Beijing: Higher Education Press, 2006 (in Chinese) [28] Naguleswaran S. Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force. Joumal of Sound and Vibration, 2004, 275(1-2): 47-57 doi: 10.1016/S0022-460X(03)00741-7 [29] 徐腾飞, 向天宇, 赵人达. 变截面Euler-Bernoulli梁在轴力作用下固有振动的级数解. 振动与冲击, 2007, 26(11): 99-101 (Xu Tengfei, Xiang Tianyu, Zhao Renda. Series solution of natural vibration of the variable cross-section Euler-Bernoulli beam under axial force. Journal of Vibration and Shock, 2007, 26(11): 99-101 (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.11.023 [30] 邢誉峰, 李敏. 计算固体力学原理与方法. 北京: 北京航空航天大学出版社, 2011Xing Yufeng, Li Min. The Theory and Method of Computational Solid Mechanics. Beijing: Beihang University Press, 2011 (in Chinese) [31] 杜运兴, 程鹏, 周芬. 变截面功能梯度Timoshenko梁的自由振动分析. 湖南大学学报(自然科学版), 2021, 48(5): 55-62 (Du Yunxing, Cheng Peng, Zhou Fen. Free vibration analysis of functionally graded Timoshenko beams with variable section. Journal of Hunan University (Natural Sciences) , 2021, 48(5): 55-62 (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2021.05.007 [32] Şimşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 2010, 240(4): 697-705 [33] 殷雅俊, 范钦珊, 王晶等. 材料力学, 第3版. 北京: 高等教育出版社, 2019Yin Yajun, Fan Qinshan, Wang Jing, et al. Mechanics of Materials, 3rd edn. Beijing: Higher Education Press, 2019 (in Chinese) [34] 邢誉峰, 李敏. 工程振动基础. 北京: 北京航空航天大学出版社, 2011Xing Yufeng, Li Min. The Foundation of Engineering Vibration. Beijing: Beihang University Press, 2011 (in Chinese) -